\documentclass[12pt]{amsart} \usepackage{amssymb} \usepackage{amsmath} \usepackage{amsthm} \usepackage[all]{xy} \voffset=-1in \hoffset=-1in \textheight=10in \textwidth=6in \begin{document} \author{} \title{Math 720\\Fall 2010\\Exam 1} \date{} \maketitle \thispagestyle{empty} \pagestyle{empty} \centerline{\it Due Monday October 11, 2010.} \centerline{} \noindent 1. (5 pt) Show that every finitely-generated subgroup of $\mathbb{Q}$ is cyclic. \centerline{} \noindent 2. (5 pt) Let $F$ be free on the set $X$ and $n\in\mathbb{N}$. Show that the subgroup of $F$ generated by the set $\{g^n\vert g\in F\}$ is normal in $F$. \centerline{} \noindent 3. (5 pt) Let $G$ be a group. Show that $\text{Inn}(G)\cong G/Z(G)$. \centerline{} \noindent 4. Let $G$ be a group with center $Z(G)$, and $p$ a positive prime integer. \begin{itemize} \item[a)] (5 pt) Show that if $G/Z(G)$ is cyclic, then $G$ is abelian. \item[b)] (5 pt) Use this to show that if $\vert G\vert=p^2$, then $G$ is abelian. \item[c)] (5 pt) Show that if $\vert G\vert=p^3$ then \[ Z(G)\cong \begin{cases} G &\text{ if $G$ is abelian}\\ \mathbb{Z}_p &\text{ if $G$ is not abelian} \end{cases} \] \item[d)] (5 pt) Show that if $\vert G\vert=p^3$ and $G$ is not abelian, then $G/Z(G)\cong\mathbb{Z}_p\oplus\mathbb{Z}_p$. \end{itemize} \end{document}