MATH 720

FALL 2010
EXAM 2

Due Monday November 29, 2010.

1. Let S be a subset of a commutative ring with identity, R. We say that S is multiplicatively closed if $s, t \in S$ implies that $s t \in S$.
a) (5 pt) Let S be a multiplicatively closed subset of R and I an ideal of R such that $I \bigcap S=\emptyset$. Show that there is an ideal $J \supseteq I$ that is maximal with respect to the property that $J \bigcap S=\emptyset$ (that is, any ideal containing J must have nonempty intersection with S). We say that the ideal J is maximal with respect to the exclusion of S.
b) (5 pt) Show if J is maximal with respect to the exclusion of S, then J is prime.
c) (5 pt) Take the specific case of S being the units of R and I any proper ideal of R. Use the above results to conclude that I is contained in a maximal ideal of R.
2. In this problem we will characterize $\operatorname{rad}(I)$. For this problem R is a commutative ring with identity and $I \subsetneq R$ is a proper ideal. Additionally we define $\mathrm{N}(R)$ to be the ideal consisting of all nilpotent elements of R.
a) (5 pt) Show that $\mathrm{N}(R) \subseteq \bigcap_{\mathfrak{P} \text { : prime }} \mathfrak{P}$.
b) (5 pt) Show that $\bigcap_{\mathfrak{P} \text { : prime }} \mathfrak{P} \subseteq \mathrm{N}(R)$. (Hint: for this part, assume that there is an element x in the intersection of all primes that is not nilpotent. Now consider the multiplicatively closed set $\left\{x^{n} \mid n \geq 0\right\}$. By the above, you should be able to expand (0) to a prime ideal that is maximal with respect to the exclusion of this set. Derive a contradiction.)
c) (5 pt) Now let I be an arbitrary ideal of a commutative ring with identity, R. Show that

$$
\operatorname{rad}(I)=\bigcap_{I \subseteq \mathfrak{P}:} \mathfrak{P} \text { prime }
$$

3. (5 pt) Let R be a commutative ring with identity. Show that the set of all zero divisors of R must contain at least one prime ideal of R.
4. (5 pt) An integral domain is called one-dimensional if (0) is not a maximal ideal and every nonzero prime ideal is maximal. Show that any PID that is not a field is one-dimensional.
5. Let R be a ring.
a) (5 pt) If $a \in R$, show that $\{r \in R \mid r a=0\}$ is a left ideal of R (called the left annihilator of a).
b) (5 pt) If I is a left ideal of R then show that the set $\{r \in R \mid r x=0, \forall x \in I\}$ is an ideal of R.
c) (5 pt) If I is an ideal of R, show that $[I: R]=\{r \in R \mid x r \in I, \forall x \in R\}$ is an ideal of R.
