MATH 721 SPRING 2011 HOMEWORK 1

Due Friday January 21, 2011. (You may assume that R-modules are unitary.)

1. (5 pt) Let R be a commutative ring with identity and M some R-module. Show that (as R-modules) there is an isomorphism

 $\operatorname{Hom}_R(R, M) \cong M.$

- 2. Let R be a commutative ring with 1, M an R-module and $m \in M$.
 - a) (5 pt) Show that $I_m = \{r \in R | rm = 0\}$ is an ideal of R. (If $I_m \neq 0$ then we say that m is a torsion element of M.)
 - b) (5 pt) If R is a domain, then show that the set of torsion elements of M forms a submodule of M (and show that this may not be the case if R is not a domain).

3. (5 pt) Let $f : A \longrightarrow B$ be an R-module homomorphism. Show f is an isomorphism if and only if there is an R-module homomorphism $g : B \longrightarrow A$ such that $fg = 1_B$ and $gf = 1_A$. Are both these conditions necessary?

4. (5 pt) Let $f : A \longrightarrow A$ be an R-module homomorphism such that f(f(x)) = f(x) for all $x \in A$. Show that $A \cong \ker(f) \oplus \operatorname{Im}(f)$.

5. In this problem, we consider various R-module structures.

- a) (5 pt) Let $R = \mathbb{Z}[x]$ and $M = \mathbb{Z}[x]$. Find at least 2 unitary *R*-module structures on *M*.
- b) (5 pt) Let $R = \mathbb{Q}$ and $M = \mathbb{Z}$. Show that there is no unitary R-module structure on M.