MATH 721
 SPRING 2011
 HOMEWORK 1

Due Friday January 21, 2011.
(You may assume that R-modules are unitary.)

1. (5 pt) Let R be a commutative ring with identity and M some R-module. Show that (as R-modules) there is an isomorphism

$$
\operatorname{Hom}_{R}(R, M) \cong M
$$

2. Let R be a commutative ring with $1, M$ an R-module and $m \in M$.
a) (5 pt) Show that $I_{m}=\{r \in R \mid r m=0\}$ is an ideal of R. (If $I_{m} \neq 0$ then we say that m is a torsion element of M.)
b) (5 pt) If R is a domain, then show that the set of torsion elements of M forms a submodule of M (and show that this may not be the case if R is not a domain).
3. (5 pt) Let $f: A \longrightarrow B$ be an R-module homomorphism. Show f is an isomorphism if and only if there is an R-module homomorphism $g: B \longrightarrow A$ such that $f g=1_{B}$ and $g f=1_{A}$. Are both these conditions necessary?
4. (5 pt) Let $f: A \longrightarrow A$ be an R-module homomorphism such that $f(f(x))=f(x)$ for all $x \in A$. Show that $A \cong \operatorname{ker}(f) \oplus \operatorname{Im}(f)$.
5. In this problem, we consider various R-module structures.
a) (5 pt) Let $R=\mathbb{Z}[x]$ and $M=\mathbb{Z}[x]$. Find at least 2 unitary R-module structures on M.
b) (5 pt) Let $R=\mathbb{Q}$ and $M=\mathbb{Z}$. Show that there is no unitary R-module structure on M.
