\documentclass[12pt]{amsart} \usepackage{amssymb} \usepackage{amsmath} \usepackage{amsthm} \usepackage[all]{xy} \voffset=-1in \hoffset=-1in \textheight=10in \textwidth=6in \begin{document} \author{} \title{Math 721\\Spring 2011\\Homework 1} \date{} \maketitle \thispagestyle{empty} \pagestyle{empty} \centerline{\it Due Friday January 21, 2011.} \centerline{({\it You may assume that $R-$modules are unitary.})} \centerline{} \noindent 1. (5 pt) Let $R$ be a commutative ring with identity and $M$ some $R-$module. Show that (as $R-$modules) there is an isomorphism \[ \text{Hom}_R(R,M)\cong M. \] \centerline{} \noindent 2. Let $R$ be a commutative ring with 1, $M$ an $R-$module and $m\in M$. \begin{itemize} \item[a)] (5 pt) Show that $I_m=\{r\in R\vert rm=0\}$ is an ideal of $R$. (If $I_m\neq 0$ then we say that $m$ is a torsion element of $M$.) \item[b)] (5 pt) If $R$ is a domain, then show that the set of torsion elements of $M$ forms a submodule of $M$ (and show that this may not be the case if $R$ is not a domain). \end{itemize} \centerline{} \noindent 3. (5 pt) Let $f:A\longrightarrow B$ be an $R-$module homomorphism. Show $f$ is an isomorphism if and only if there is an $R-$module homomorphism $g:B\longrightarrow A$ such that $fg=1_B$ and $gf=1_A$. Are both these conditions necessary? \centerline{} \noindent 4. (5 pt) Let $f:A\longrightarrow A$ be an $R-$module homomorphism such that $f(f(x))=f(x)$ for all $x\in A$. Show that $A\cong\text{ker}(f)\oplus\text{Im}(f)$. \centerline{} \noindent 5. In this problem, we consider various $R-$module structures. \begin{itemize} \item[a)] (5 pt) Let $R=\mathbb{Z}[x]$ and $M=\mathbb{Z}[x]$. Find at least 2 {\it unitary} $R-$module structures on $M$. \item[b)] (5 pt) Let $R=\mathbb{Q}$ and $M=\mathbb{Z}$. Show that there is no unitary $R-$module structure on $M$. \end{itemize} \end{document}