MATH 721
 SPRING 2011
 HOMEWORK 2

Due Friday February 4, 2011.

1. (The Five Lemma.) Consider the following commutative diagram of R-module homomorphisms with exact rows

a) (5 pt) Show that if g_{2} and g_{4} are onto and g_{5} is one to one then g_{3} is onto.
b) (5 pt) Show that if g_{2} and g_{4} are one to one and g_{1} is onto then g_{3} is one to one.
c) (5 pt) Establish the short five lemma as a special case of a) and b).
2. (The 3×3 Lemma.) Consider the following commutative diagram of R-module homomorphisms

a) (5 pt) Show that if the columns and the bottom two rows are exact, then the top row is exact.
b) (5 pt) Show that if the columns and the top two rows are exact, then the bottom row is exact.
3. (The Snake Lemma.) Consider the following commutative diagram with exact rows

a) (5 pt) Show that there is an exact sequence

$$
\operatorname{ker}\left(g_{1}\right) \xrightarrow{\alpha_{1}} \operatorname{ker}\left(g_{2}\right) \xrightarrow{\alpha_{2}} \operatorname{ker}\left(g_{3}\right) \xrightarrow{\partial} \operatorname{coker}\left(g_{1}\right) \xrightarrow{\beta_{1}} \operatorname{coker}\left(g_{2}\right) \xrightarrow{\beta_{2}} \operatorname{coker}\left(g_{3}\right)
$$

b) (5 pt) Show that if f_{1} is one to one, then so is α_{1}.
c) $(5 \mathrm{pt})$ Show that if h_{2} is onto, then so is β_{2}.
4. An R-module S is said to be simple if the only submodules of S are itself and 0 .
a) (5 pt) Show that any simple R-module is cyclic (that is, is of the form $R a$ for some $a \in S$).
b) (5 pt) Characterize all R-module homomorphisms $f: S \longrightarrow S$ where S is a simple R-module.
5. Let R be a ring, we define the opposite ring, $R^{\text {op }}$ to be the ring with the same underlying abelian group $(R,+)$ and multiplication given by $x * y=y x$ where $y x$ is ordinary multiplication.
a) (5 pt) Show that R^{op} is a ring.
b) (5 pt) Show that if M is a left R-module, then M is a right R^{op} - module.

