1. Let D be a divisible abelian group.
 a) (5 pt) Show that any homomorphic image of D is again divisible.
 b) (5 pt) Show that if G is any abelian group, then $G \cong D_1 \oplus N$ where D_1 is a
divisible abelian group and N is an abelian group with no nontrivial divisible
subgroups.
 c) (5 pt) Show that any abelian group may be embedded in a divisible abelian
group (more generally, any unitary R–module M may be embedded in the
injective R–module $\text{Hom}_\mathbb{Z}(R, D)$ where D is a divisible group containing M).

2. (5 pt) Show that the following conditions on an R–module I are equivalent.
 a) I is injective.
 b) Every short exact sequence of the form
 $0 \rightarrow I \rightarrow B \rightarrow C \rightarrow 0$
is split exact.
 c) I is a direct summand of any module of which it is a submodule.

3. (5 pt) Let R be a ring. Show that as a ring $\text{Hom}_R(R, R) \cong R^{\text{op}}$ (here R^{op} is
the opposite ring of R where the underlying set is the same and the multiplication is
given by $r \circ s = sr$).

4. Let A be an abelian group, show that we have the following isomorphisms of
abelian groups.
 a) (5 pt) $\text{Hom}_\mathbb{Z}(\mathbb{Z}_m, A) \cong A[m]$ where $A[m] = \{a \in A | ma = 0\}$.
 b) (5 pt) $\text{Hom}_\mathbb{Z}(\mathbb{Z}_m, \mathbb{Z}_n) \cong \mathbb{Z},$ where $d = \gcd(m, n)$.

5. (5 pt) Let $\{J_i\}_{i \in I}$ be a family of R–modules. Show that $\prod_{i \in I} J_i$ is injective if and
only if J_i is injective for all $i \in I$.