MATH 721
 SPRING 2011
 HOMEWORK 3

Due Wednesday February 16, 2010.

1. (15 pt) Show that the following conditions on an R-module I are equivalent.
a) I is injective.
b) Every short exact sequence of the form

$$
0 \longrightarrow I \longrightarrow B \longrightarrow C \longrightarrow 0
$$

is split exact.
c) I is a direct summand of any module of which it is a submodule.
2. (10 pt) Show that the sequence of R-module homomorphisms

$$
A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0
$$

is exact if and only if for every R-module D, the sequence of R-module homomorphisms

$$
0 \longrightarrow \operatorname{Hom}_{R}(C, D) \xrightarrow{\bar{g}} \operatorname{Hom}_{R}(B, D) \xrightarrow{\bar{f}} \operatorname{Hom}_{R}(A, D)
$$

3. Let A be an abelian group, show that we have the following isomorphisms of abelian groups.
a) $(5 \mathrm{pt}) \operatorname{Hom}_{\mathbb{Z}}\left(\mathbb{Z}_{m}, A\right) \cong A[m]$ where $A[m]=\{a \in A \mid m a=0\}$.
b) $(5 \mathrm{pt}) \operatorname{Hom}_{\mathbb{Z}}\left(\mathbb{Z}_{m}, \mathbb{Z}_{n}\right) \cong \mathbb{Z}_{d}$, where $d=\operatorname{gcd}(m, n)$.
4. (5 pt) Let $\left\{J_{i}\right\}_{i \in I}$ be a family of R-modules. Show that $\prod_{i \in I} J_{i}$ is injective if and only if J_{i} is injective for all $i \in I$.
