\documentclass[12pt]{amsart} \usepackage{amssymb} \usepackage{amsmath} \usepackage{amsthm} \usepackage[all]{xy} \voffset=-1in \hoffset=-1in \textheight=10in \textwidth=6in \begin{document} \author{} \title{Math 721\\Spring 2011\\Homework 3} \date{} \maketitle \thispagestyle{empty} \pagestyle{empty} \centerline{\it Due Wednesday February 16, 2010.} \centerline{} \noindent 1. (15 pt) Show that the following conditions on an $R-$module $I$ are equivalent. \begin{itemize} \item[a)] $I$ is injective. \item[b)] Every short exact sequence of the form \begin{center} $\xymatrix@1{0\ar[r] & I\ar[r] &B\ar[r] & C\ar[r] & 0}$ \end{center} \noindent is split exact. \item[c)] $I$ is a direct summand of any module of which it is a submodule. \end{itemize} \centerline{} \noindent 2. (10 pt) Show that the sequence of $R-$module homomorphisms \begin{center} $\xymatrix@1{A\ar[r]^f &B\ar[r]^g & C\ar[r] & 0}$ \end{center} is exact if and only if for every $R-$module $D$, the sequence of $R-$module homomorphisms \begin{center} $\xymatrix@1{0\ar[r] &\text{Hom}_R(C,D)\ar[r]^{\overline{g}} &\text{Hom}_R(B,D)\ar[r]^{\overline{f}} &\text{Hom}_R(A,D)}$ \end{center} \centerline{} \noindent 3. Let $A$ be an abelian group, show that we have the following isomorphisms of abelian groups. \begin{itemize} \item[a)] (5 pt) $\text{Hom}_{\mathbb{Z}}(\mathbb{Z}_m, A)\cong A[m]$ where $A[m]=\{a\in A\vert ma=0\}$. \item[b)] (5 pt) $\text{Hom}_{\mathbb{Z}}(\mathbb{Z}_m, \mathbb{Z}_n)\cong \mathbb{Z}_d$, where $d=\text{gcd}(m,n)$. \end{itemize} \centerline{} \noindent 4. (5 pt) Let $\{J_i\}_{i\in I}$ be a family of $R-$modules. Show that $\prod_{i\in I}J_i$ is injective if and only if $J_i$ is injective for all $i\in I$. \end{document}