MATH 721
 SPRING 2004
 HOMEWORK 4

Due Monday March 8, 2004.

1. Find the canonical forms (the rational canonical form, primary rational canonical form and Jordan canonical form if possible) for the following matrices over \mathbb{Q} :
a) $\begin{aligned} & \text { b pt) } {\left[\begin{array}{rrrr}-1 & 2 & -1 & 0 \\ -2 & 3 & -1 & 0 \\ 1 & -1 & 2 & 0 \\ -1 & 1 & 0 & 1\end{array}\right] } \\ & \text { b) }(5 \mathrm{pt})\left[\begin{array}{rrrrr}3 & 1 & 0 & 1 & 1 \\ 0 & 3 & 0 & -1 & 0 \\ 0 & -2 & 4 & 2 & 0 \\ 0 & -1 & 0 & 3 & 0 \\ 1 & -1 & 0 & -1 & 3\end{array}\right]\end{aligned}$
2. (5 pt) Show that an $n \times n$ matrix (A) over a field \mathbb{F} is similar to a diagonal matrix if and only if there is a basis of \mathbb{F}^{n} consisting of eigenvectors of A.
3. A matrix A is said to be nilpotent if there is an $m \geq 1$ such that $A^{m}=0$. Additionally, we define the trace of $A(\operatorname{tr}(A))$ to be the sum of the diagonal elements of A. For this problem, you may assume that A is an $n \times n$ matrix over a field \mathbb{F}.
a) (5 pt) Show that if $A^{n} \neq 0$ then A is not nilpotent (i.e. if A is nilpotent then a power less than or equal to n must annihilate the matrix).
b) (5 pt) Show that if P is an invertible $n \times n$ matrix then $\operatorname{tr}\left(P^{-1} A P\right)=\operatorname{tr}(A)$.
c) (5 pt) Show that A is nilpotent if and only if all of its eigenvalues are 0 (you may assume that all of the eigenvalues are in the field).
d) (5 pt) Show that if A is nilpotent, then $\operatorname{tr}(A)=0$.
e) $(5 \mathrm{pt})$ Determine the status of the converse of the statement in part d).
