\documentclass[12pt]{amsart} \usepackage{amssymb} \usepackage{amsmath} \usepackage{amsthm} \usepackage[all]{xy} \voffset=-1in \hoffset=-1in \textheight=10in \textwidth=6in \begin{document} \author{} \title{Math 721\\Spring 2011\\Homework 5} \date{} \maketitle \thispagestyle{empty} \pagestyle{empty} \centerline{\it Due Monday April 4, 2011.} \centerline{} \noindent 1. (5 pt) Let $K\subseteq F$ be fields. We define $\text{Aut}_K(F)$ to be the set of automophisms \\ $\sigma:F\longrightarrow F$ such that $\sigma(k)=k$ for all $k\in K$. This is called the {\it Galois group} of $F$ over $K$. Show that if $[F:K]=n$ then $\vert\text{Aut}_K(F)\vert$ divides $n$. What happens when $n$ is prime? \centerline{} \noindent 2. (5 pt) Show that if $K\subseteq F$ and $u\in F$ is algebraic over $K$ of odd degree, then $K(u^2)=K(u)$. What can you say if $u$ is transcendental over $K$? \centerline{} \noindent 3. (5 pt) Let $F$ be a finite field of characteristic $p$. Show that $\text{Aut}_{\mathbb{Z}_p}(F)$ is cyclic. \centerline{} \noindent 4. (5 pt) Let $K\subseteq F$ be fields and let $\overline{K}_F=\{z\in F\vert z \text{ is algebraic over K}\}$. Show that $\overline{K}_F$ is a subfield of $F$ containing $K$ (this is called the algebraic closure of $K$ in $F$). \end{document}