\documentclass[12pt]{amsart} \usepackage{amssymb} \usepackage{amsmath} \usepackage{amsthm} \usepackage[all]{xy} \voffset=-1in \hoffset=-1in \textheight=10in \textwidth=6in \begin{document} \author{} \title{Math 721\\Spring 2011\\Homework 6} \date{} \maketitle \thispagestyle{empty} \pagestyle{empty} \centerline{\it Due Friday May 6, 2011.} \centerline{} \noindent 1. (5 pt) Let $F$ be a finite field. Show that any element in $F$ can be written as the sum of two squares. \centerline{} \noindent 2. Let $K$ be a finite field and $F$ an algebraic closure of $K$. \begin{itemize} \item[a)] (5 pt) Show that $\text{Gal}(F/K)$ is abelian. \item[b)] (5 pt) Show that every nonidentity element of $\text{Gal}(F/K)$ is of infinite order. \end{itemize} \centerline{} \noindent 3. Let the characteristic of $K$ be $p>0$. \begin{itemize} \item[a)] (5 pt) If $[F:K]=n$ and $p$ does not divide $n$, then $F$ is separable over $K$. \item[b)] (5 pt) If $u\in F$ is algebraic over $K$, then $u$ is separable over $K$ if and only if $K(u)=K(u^{p^n})$ for all $n\geq 1$. \end{itemize} \centerline{} \noindent 4. (5 pt) Let $F$ be an extension of $K$ and $u,v\in F$ such that $u$ is separable over $K$ and $v$ is totally inseperable over $K$. Show that $K(u+v)=K(u,v)$. Also show that $K(u,v)=K(uv)$ if both $u$ and $v$ are nonzero. \end{document}