MATH 721
 SPRING 2011
 EXAM 1

Due Monday February 28, 2011. As is usual on exams, I am the only biological resource that you should use.

1. (Localizations are flat) Let R be an integral domain, let N be an R-module and $S \subseteq R$ a multiplicative set.
a) (5 pt) Show that the set $S^{-1} N=\left\{\left.\frac{n}{s} \right\rvert\, n \in N, s \in S\right\}$ (where we declare that $\frac{n_{1}}{s_{1}}=\frac{n_{2}}{s_{2}}$ if and only if there is a $t \in S$ such that $\left.t\left(s_{2} n_{1}-s_{1} n_{2}\right)=0\right)$ is an R-module with addition given by

$$
\frac{n_{1}}{s_{1}}+\frac{n_{2}}{s_{2}}=\frac{s_{2} n_{1}+s_{1} n_{2}}{s_{1} s_{2}}
$$

and R - action

$$
r\left(\frac{n}{s}\right)=\frac{r n}{s} .
$$

b) (5 pt) Show that every element of $R_{S} \otimes_{R} N$ can be written as a single tensor of the form $\left(\frac{1}{s}\right) \otimes n$ with $s \in S$ and $n \in N$.
c) (5 pt) Show that there is an isomorphism $R_{S} \otimes_{R} N \cong S^{-1} N$.
d) (5 pt) Show that a tensor of the form $\left(\frac{1}{s}\right) \otimes n$ is 0 if and only if there exists $t \in S$ such that $t n=0$.
e) (5 pt) Show that R_{S} is a flat R-module.
f) (5 pt) Show that \mathbb{Q} is a flat \mathbb{Z}-module that is not projective.
2. Let R be an integral domain with quotient field K and M an R-module. Let $T(M)=\{x \in M \mid r x=0$ for some nonzero $r \in R\}$. We have shown that $T(M)$ is a submodule of M.
a) (5 pt) Show that $M / T(M)$ is torsion free.
b) (5 pt) Show that $M \otimes_{R} K \cong M / T(M) \otimes_{R} K$.
3. (5 pt) We showed in class that tensor product and direct sum commute (that is, $\left.M \otimes_{R}\left(\oplus_{i \in I} A_{i}\right) \cong \oplus_{i \in I}\left(M \otimes_{R} A_{i}\right)\right)$. Does this result hold in general for direct products (i.e. is $\left.M \otimes_{R}\left(\prod_{i \in I} A_{i}\right) \cong \prod_{i \in I}\left(M \otimes_{R} A_{i}\right)\right)$?
4. (5 pt) (Adjoint Associativity) Show that if R is commutative with identity and A, B, and C are R-modules, then we have an R-module isomorphism

$$
\operatorname{Hom}_{R}\left(A \otimes_{R} B, C\right) \cong \operatorname{Hom}_{R}\left(A, \operatorname{Hom}_{R}(B, C)\right)
$$

5. Suppose that R is commutative with identity, $I \subseteq R$ an ideal, and J and M are R-modules.
a) (5 pt) Show that $R / I \otimes_{R} M \cong M / I M$.
b) (5 pt) Show that if $R=\mathbb{Z}$ and J is injective, then $M \otimes_{R} J$ is injective.
