Due Monday February 28, 2011. As is usual on exams, I am the only biological resource that you should use.

1. (Localizations are flat) Let \(R \) be an integral domain, let \(N \) be an \(R \)-module and \(S \subseteq R \) a multiplicative set.
 a) (5 pt) Show that the set \(S^{-1}N = \{ \frac{n}{s} | n \in N, s \in S \} \) (where we declare that \(\frac{n}{s_1} = \frac{n}{s_2} \) if and only if there is a \(t \in S \) such that \(t(s_2n_1 - s_1n_2) = 0 \)) is an \(R \)-module with addition given by
 \[
 \frac{n_1}{s_1} + \frac{n_2}{s_2} = \frac{s_2n_1 + s_1n_2}{s_1s_2}
 \]
 and \(R \)-action
 \[
 r(\frac{n}{s}) = \frac{rn}{s}.
 \]
 b) (5 pt) Show that every element of \(R_S \otimes_R N \) can be written as a single tensor of the form \((\frac{1}{s}) \otimes n \) with \(s \in S \) and \(n \in N \).
 c) (5 pt) Show that there is an isomorphism \(R_S \otimes_R N \cong S^{-1}N \).
 d) (5 pt) Show that a tensor of the form \((\frac{1}{s}) \otimes n \) is 0 if and only if there exists \(t \in S \) such that \(tn = 0 \).
 e) (5 pt) Show that \(R_S \) is a flat \(R \)-module.
 f) (5 pt) Show that \(\mathbb{Q} \) is a flat \(\mathbb{Z} \)-module that is not projective.

2. Let \(R \) be an integral domain with quotient field \(K \) and \(M \) an \(R \)-module. Let \(T(M) = \{ x \in M | rx = 0 \text{ for some nonzero } r \in R \} \). We have shown that \(T(M) \) is a submodule of \(M \).
 a) (5 pt) Show that \(M/T(M) \) is torsion free.
 b) (5 pt) Show that \(M \otimes_R K \cong M/T(M) \otimes_R K \).

3. (5 pt) We showed in class that tensor product and direct sum commute (that is, \(M \otimes_R (\oplus_{i \in I} A_i) \cong \oplus_{i \in I} (M \otimes_R A_i) \)). Does this result hold in general for direct products (i.e. is \(M \otimes_R (\prod_{i \in I} A_i) \cong \prod_{i \in I} (M \otimes_R A_i) \))?

4. (5 pt) (Adjoint Associativity) Show that if \(R \) is commutative with identity and \(A, B, \) and \(C \) are \(R \)-modules, then we have an \(R \)-module isomorphism
 \[
 \text{Hom}_R(A \otimes_R B, C) \cong \text{Hom}_R(A, \text{Hom}_R(B, C)).
 \]

5. Suppose that \(R \) is commutative with identity, \(I \subseteq R \) an ideal, and \(J \) and \(M \) are \(R \)-modules.
 a) (5 pt) Show that \(R/I \otimes_R M \cong M/IM \).
 b) (5 pt) Show that if \(R = \mathbb{Z} \) and \(J \) is injective, then \(M \otimes_R J \) is injective.