MATH 721
 SPRING 2011
 EXAM 2

Due Monday April 18, 2011. As is usual on exams, I am the only biological resource that you should use.

1. Consider the polynomial $f(x)=x^{5}-3 \in \mathbb{Q}[x]$.
a) (5 pt) Let F be the field obtained by adjoining one of the complex roots of the above polynomial to \mathbb{Q}. Find $[F: \mathbb{Q}]$ and show that this extension is not Galois.
b) (5 pt) Show that $x^{4}+x^{3}+x^{2}+x+1$ is irreducible over F.
c) (5 pt) If \bar{F} is the field obtained by adjoining all of the roots of $f(x)$ to \mathbb{Q}, find the Galois group $\operatorname{Gal}(\bar{F} / \mathbb{Q})$. (Hint: this group must be a transitive subgroup of S_{5}.)
2. Consider the field, F, obtained by adjoining all roots of the polynomial $f(x)=$ $x^{6}-4 x^{3}+1$ to the rational numbers \mathbb{Q}.
a) (5 pt) Show that complex conjugation is a nontrivial automorphism of F.
b) (5 pt) If α is a real root of this polynomial, show that the map induced by $\alpha \mapsto \alpha^{-1}$ gives rise to an automorphism of $\mathbb{Q}(\alpha)$.
c) $(5 \mathrm{pt})$ Show that $[F: \mathbb{Q}]=12$.
d) (5 pt) Find the Galois group of F over \mathbb{Q}.
3. (5 pt) Consider the field extension $\mathbb{Q} \subseteq \mathbb{Q}(x)$. Show that $\mathbb{Q}\left(x^{2}\right)$ is a closed intermediate extension, but $\mathbb{Q}\left(x^{3}\right)$ is not.
4. (5 pt) Show that if K is a field such that $\operatorname{char}(K) \neq 2$ and $[F: K]=2$ then F is Galois over K.
5. (5 pt) If E is Galois over K and F is Galois over E, is it true that F is Galois over K ? Prove the statement or give a counterexample.
