MATH 721 SPRING 2011 EXAM 2

Due Monday April 18, 2011. As is usual on exams, I am the only biological resource that you should use.

- 1. Consider the polynomial $f(x) = x^5 3 \in \mathbb{Q}[x]$.
 - a) (5 pt) Let F be the field obtained by adjoining one of the complex roots of the above polynomial to \mathbb{Q} . Find $[F:\mathbb{Q}]$ and show that this extension is not Galois.
 - b) (5 pt) Show that $x^4 + x^3 + x^2 + x + 1$ is irreducible over F.
 - c) (5 pt) If \overline{F} is the field obtained by adjoining all of the roots of f(x) to \mathbb{Q} , find the Galois group $\operatorname{Gal}(\overline{F}/\mathbb{Q})$. (Hint: this group must be a transitive subgroup of S_5 .)
- 2. Consider the field, F, obtained by adjoining all roots of the polynomial $f(x) = x^6 4x^3 + 1$ to the rational numbers \mathbb{Q} .
 - a) (5 pt) Show that complex conjugation is a nontrivial automorphism of F.
 - b) (5 pt) If α is a real root of this polynomial, show that the map induced by $\alpha \mapsto \alpha^{-1}$ gives rise to an automorphism of $\mathbb{Q}(\alpha)$.
 - c) (5 pt) Show that $[F:\mathbb{Q}]=12$.
 - d) (5 pt) Find the Galois group of F over \mathbb{Q} .
- 3. (5 pt) Consider the field extension $\mathbb{Q} \subseteq \mathbb{Q}(x)$. Show that $\mathbb{Q}(x^2)$ is a closed intermediate extension, but $\mathbb{Q}(x^3)$ is not.
- 4. (5 pt) Show that if K is a field such that $\operatorname{char}(K) \neq 2$ and [F:K] = 2 then F is Galois over K.
- 5. (5 pt) If E is Galois over K and F is Galois over E, is it true that F is Galois over K? Prove the statement or give a counterexample.