\documentclass[12pt]{amsart} \usepackage{amssymb} \usepackage{amsmath} \voffset=-1in \hoffset=-1in \textheight=10in \textwidth=6in \begin{document} \author{} \title{Math 721\\Spring 2011\\Exam 2} \date{} \maketitle \thispagestyle{empty} \pagestyle{empty} \begin{center} {\it Due Monday April 18, 2011. As is usual on exams, I am the only biological resource that you should use.} \end{center} \centerline{} \noindent 1. Consider the polynomial $f(x)=x^5-3\in \mathbb{Q}[x]$. \begin{itemize} \item[a)] (5 pt) Let $F$ be the field obtained by adjoining one of the complex roots of the above polynomial to $\mathbb{Q}$. Find $[F:\mathbb{Q}]$ and show that this extension is not Galois. \item[b)] (5 pt) Show that $x^4+x^3+x^2+x+1$ is irreducible over $F$. \item[c)] (5 pt) If $\overline{F}$ is the field obtained by adjoining all of the roots of $f(x)$ to $\mathbb{Q}$, find the Galois group $\text{Gal}(\overline{F}/\mathbb{Q})$. (Hint: this group must be a transitive subgroup of $S_5$.) \end{itemize} \centerline{} \noindent 2. Consider the field, $F$, obtained by adjoining all roots of the polynomial $f(x)=x^6-4x^3+1$ to the rational numbers $\mathbb{Q}$. \begin{itemize} \item[a)] (5 pt) Show that complex conjugation is a nontrivial automorphism of $F$. \item[b)] (5 pt) If $\alpha$ is a real root of this polynomial, show that the map induced by $\alpha\mapsto\alpha^{-1}$ gives rise to an automorphism of $\mathbb{Q}(\alpha)$. \item[c)] (5 pt) Show that $[F:\mathbb{Q}]=12$. \item[d)] (5 pt) Find the Galois group of $F$ over $\mathbb{Q}$. \end{itemize} \centerline{} \noindent 3. (5 pt) Consider the field extension $\mathbb{Q}\subseteq\mathbb{Q}(x)$. Show that $\mathbb{Q}(x^2)$ is a closed intermediate extension, but $\mathbb{Q}(x^3)$ is not. \centerline{} \noindent 4. (5 pt) Show that if $K$ is a field such that $\text{char}(K)\neq 2$ and $[F:K]=2$ then $F$ is Galois over $K$. \centerline{} \noindent 5. (5 pt) If $E$ is Galois over $K$ and $F$ is Galois over $E$, is it true that $F$ is Galois over $K$? Prove the statement or give a counterexample. \end{document}