MATH 721 SPRING 2011 FINAL EXAM

Due before I have to chase you to Pakistan. As is usual on exams, I am the only biological resource that you should use.

1. Let R be a domain with quotient field K and \overline{R} the integral closure of R. V will denote a valuation overring of R.

- a) Show that \overline{R} is integrally closed.
- b) Show that $\overline{R} \subseteq \bigcap_{R \subseteq V \subseteq K} V$.
- c) Now show that $\overline{R} = \bigcap_{R \subseteq V \subseteq K} V$.

2. Let R be a domain with quotient field K. An element $x \in K$ is said to be *almost* integral if there is a nonzero $r \in R$ such that $rx^n \in R$ for all $n \in \mathbb{N}$. We say that a domain is completely integrally closed if it contains all of its almost integral elements.

- a) Show that if $x \in K$ is integral over R, then x is almost integral over R.
- b) Give an example of an element that is almost integral, but not integral.
- c) Show that if R is Noetherian, then any almost integral element over R is integral over R.
- d) Let V be a valuation domain that is not a field. Show that V is completely integrally closed if and only if V is one-dimensional (that is, every nonzero prime ideal is maximal).
- 3. We say that R is a Prüfer domain if $R_{\mathfrak{P}}$ is a valuation domain for all prime ideals $\mathfrak{P} \subseteq R$. We say that R is a Bezout domain if every finitely generated ideal is principal.
 - a) Show that V is a valuation domain if and only if V is a quasilocal Bezout domain.
 - b) Show that R is a Prüfer domain if and only if every finitely generated ideal of R is invertible.