MATH 724 SUMMER 2009 HOMEWORK 1

Due Sometime.

1. (5 pt) Show that if $T_1 : \mathfrak{A} \longrightarrow \mathfrak{B}$ and $T_2 : \mathfrak{B} \longrightarrow \mathfrak{C}$ are both covariant or both contravariant (functors), then $T_2 \circ T_1$ is covariant.

2. Give examples for each of the following.

- a) (5 pt) Show that $\operatorname{Hom}_R(\prod_{\alpha \in I} A_\alpha, B)$ is not generally isomorphic to $\prod_{\alpha \in I} \operatorname{Hom}_R(A_\alpha, B)$. b) (5 pt) Show that $\operatorname{Hom}_R(\prod_{\alpha \in I} A_\alpha, B)$ is not generally isomorphic to $\bigoplus_{\alpha \in I} \operatorname{Hom}_R(A_\alpha, B)$.
- a) (5 pt) Show that $\operatorname{Hom}_R(B, \bigoplus_{\alpha \in I} A_\alpha)$ is not generally isomorphic to $\bigoplus_{\alpha \in I} \operatorname{Hom}_R(B, A_\alpha)$.
- a) (5 pt) Show that $\operatorname{Hom}_R(B, \bigoplus_{\alpha \in I} A_\alpha)$ is not generally isomorphic to $\prod_{\alpha \in I} \operatorname{Hom}_R(B, A_\alpha)$.

3. (20 pt) Given the diagram of R-modules below with exact bottom row,

$$A \xrightarrow{h \swarrow} \int_{g}^{h} B \longrightarrow 0$$

we say that P is projective if there is an R-module homomorphism $h: P \longrightarrow A$ such that gh = f.

Prove the following conditions are equivalent:

- a) P is projective.
- b) Every short exact sequence of the form $0 \longrightarrow A \longrightarrow B \longrightarrow P \longrightarrow 0$ is split exact.
- c) There is an *R*-module *K* and a free module *F* such that $F \cong P \oplus K$.
- d) $\operatorname{Hom}_R(P, -)$ is an exact functor.

4. (20 pt) Dualize the previous problem to "invent" injective modules and prove the equivalence of the analogous conditions.