MATH 724
 SUMMER 2009
 HOMEWORK 1

Due Sometime.

1. (5 pt) Show that if $T_{1}: \mathfrak{A} \longrightarrow \mathfrak{B}$ and $T_{2}: \mathfrak{B} \longrightarrow \mathfrak{C}$ are both covariant or both contravariant (functors), then $T_{2} \circ T_{1}$ is covariant.
2. Give examples for each of the following.
a) (5 pt) Show that $\operatorname{Hom}_{R}\left(\prod_{\alpha \in I} A_{\alpha}, B\right)$ is not generally isomorphic to $\prod_{\alpha \in I} \operatorname{Hom}_{R}\left(A_{\alpha}, B\right)$.
b) (5 pt) Show that $\operatorname{Hom}_{R}\left(\prod_{\alpha \in I} A_{\alpha}, B\right)$ is not generally isomorphic to $\oplus_{\alpha \in I} \operatorname{Hom}_{R}\left(A_{\alpha}, B\right)$.
a) (5 pt) Show that $\operatorname{Hom}_{R}\left(B, \oplus_{\alpha \in I} A_{\alpha}\right)$ is not generally isomorphic to $\oplus_{\alpha \in I} \operatorname{Hom}_{R}\left(B, A_{\alpha}\right)$.
a) (5 pt) Show that $\operatorname{Hom}_{R}\left(B, \oplus_{\alpha \in I} A_{\alpha}\right)$ is not generally isomorphic to $\prod_{\alpha \in I} \operatorname{Hom}_{R}\left(B, A_{\alpha}\right)$.
3. (20 pt) Given the diagram of R-modules below with exact bottom row,

we say that P is projective if there is an R-module homomorphism $h: P \longrightarrow A$ such that $g h=f$.

Prove the following conditions are equivalent:
a) P is projective.
b) Every short exact sequence of the form $0 \longrightarrow A \longrightarrow B \longrightarrow P \longrightarrow 0$ is split exact.
c) There is an R-module K and a free module F such that $F \cong P \oplus K$.
d) $\operatorname{Hom}_{R}(P,-)$ is an exact functor.
4. (20 pt) Dualize the previous problem to "invent" injective modules and prove the equivalence of the analogous conditions.

