\documentclass[12pt]{amsart} \usepackage{amssymb} \usepackage{amsmath} \usepackage{amsthm} \usepackage[all]{xy} \voffset=-1in \hoffset=-1in \textheight=10in \textwidth=6in \begin{document} \author{} \title{Math 724\\Summer 2009\\Homework 1} \date{} \maketitle \thispagestyle{empty} \pagestyle{empty} \centerline{\it Due Sometime.} \centerline{} \noindent 1. (5 pt) Show that if $T_1:\mathfrak{A}\longrightarrow\mathfrak{B}$ and $T_2:\mathfrak{B}\longrightarrow\mathfrak{C}$ are both covariant or both contravariant (functors), then $T_2\circ T_1$ is covariant. \centerline{} \noindent 2. Give examples for each of the following. \begin{itemize} \item[a)] (5 pt) Show that $\text{Hom}_R(\prod_{\alpha\in I}A_{\alpha},B)$ is not generally isomorphic to $\prod_{\alpha\in I}\text{Hom}_R(A_{\alpha},B)$. \item[b)] (5 pt) Show that $\text{Hom}_R(\prod_{\alpha\in I}A_{\alpha},B)$ is not generally isomorphic to $\oplus_{\alpha\in I}\text{Hom}_R(A_{\alpha},B)$. \item[a)] (5 pt) Show that $\text{Hom}_R(B,\oplus_{\alpha\in I}A_{\alpha})$ is not generally isomorphic to $\oplus_{\alpha\in I}\text{Hom}_R(B, A_{\alpha})$. \item[a)] (5 pt) Show that $\text{Hom}_R(B,\oplus_{\alpha\in I}A_{\alpha})$ is not generally isomorphic to $\prod_{\alpha\in I}\text{Hom}_R(B,A_{\alpha})$. \end{itemize} \centerline{} \noindent 3. (20 pt) Given the diagram of $R-$modules below with exact bottom row, \begin{center} $\xymatrix{ & P\ar@{-->}[dl]_h\ar[d]^f & \\ A\ar[r]_g &B\ar[r] & 0}$ \end{center} \noindent we say that $P$ is projective if there is an $R-$module homomorphism $h:P\longrightarrow A$ such that $gh=f$. Prove the following conditions are equivalent: \begin{itemize} \item[a)] $P$ is projective. \item[b)] Every short exact sequence of the form $\xymatrix@1{0\ar[r]&A\ar[r]&B\ar[r]&P\ar[r]&0}$ is split exact. \item[c)] There is an $R-$module $K$ and a free module $F$ such that $F\cong P\oplus K$. \item[d)] $\text{Hom}_R(P,-)$ is an exact functor. \end{itemize} \centerline{} 4. (20 pt) Dualize the previous problem to ``invent" injective modules and prove the equivalence of the analogous conditions. \end{document}