\documentclass[12pt]{amsart} \usepackage{amssymb} \usepackage{amsmath} \usepackage{amsthm} \usepackage[all]{xy} \voffset=-1in \hoffset=-1in \textheight=10in \textwidth=6in \begin{document} \author{} \title{Math 724\\Summer 2010\\Homework 1} \date{} \maketitle \thispagestyle{empty} \pagestyle{empty} \centerline{\it Due Monday, June 28, 2010.} \centerline{} \noindent 1. Let $V$ be a valuation domain. Prove the following. \begin{itemize} \item[a)] (5 pts) Show that $V$ is integrally closed. \item[b)] (5 pts) Show that every overring of $V$ is a valuation domain. \item[c)] (5 pts) Show that every overring of $V$ is a localization of $V$. \end{itemize} \centerline{} \noindent 2. (5 pts) Let $\mathbb{F}$ be a field. Find an overring of $\mathbb{F}[x,y]$ that is not integrally closed or prove that no such overring can exist. \centerline{} \noindent 3. Let $R$ be an integral domain, $I\subseteq R$ a nonzero ideal, and $S$ a multiplicatively closed subset of $R$. \begin{itemize} \item[a)] (5 pts) Show that if $I$ is an invertible ideal of $R$ then $I_S$ is an invertible ideal of $R_S$. \item[b)] (5 pts) Show that if $I$ is finitely generated then $I$ is an invertible ideal of $R$ if and only if $I_{\mathfrak{M}}$ is principal for all $\mathfrak{M}\in\text{MaxSpec}(R)$. \end{itemize} \end{document}