\documentclass[12pt]{amsart} \usepackage{amssymb} \usepackage{amsmath} \usepackage{amsthm} \usepackage[all]{xy} \voffset=-1in \hoffset=-1in \textheight=10in \textwidth=6in \begin{document} \author{} \title{Math 724\\Fall 2005\\Homework 2} \date{} \maketitle \thispagestyle{empty} \pagestyle{empty} \centerline{\it Due Monday September 19, 2005.} \centerline{} \noindent 1. A ring is called {\it Von Neumann regular} if for every $x\in R$ there is a $y\in R$ such that $xyx=x$. Let $R$ be a (commutative) Von Neumann regular ring. \begin{itemize} \item[a)] (5 pt) Show that if $R$ is an integral domain, then $R$ is a field. \item[b)] (5 pt) Show that any direct product of fields is Von Neumann regular. \item[c)] (5 pt) Show that if $\mathfrak{P}$ is a prime ideal in $R$ then $R_{\mathfrak{P}}\cong R/\mathfrak{P}$. \end{itemize} \centerline{} \noindent 2. A ring is called Artinian if it satifies the descending chain on prime ideals (that is given any descending chain of ideals $I_1\supseteq I_2\supseteq I_3\cdots$, there is a natural number $N$ such that $I_n=I_N$ for all $n\geq N$). \begin{itemize} \item[a)] (5 pt) Show that any Artinian domain is a field. \item[b)] (5 pt) Show that $R$ is Artinian if and only if $R$ is Noetherian and zero-dimensional. \end{itemize} \centerline{} \noindent 3. Let $R$ be an integral domain and consider the ring of formal power series $R[[x]]$. \begin{itemize} \item[a)] (5 pt) Show that $U(R[[x]])=\{f(x)\in R[[x]]\vert f(0)\in U(R)\}$. \item[b)] (5 pt) Show that there is a one-to-one correspondence between the maximal ideals of $R$ and the maximal ideals of $R[[x]]$. \item[c)] (5 pt) Show that if $R$ is a PID, then $R[[x]]$ is a UFD. \end{itemize} \end{document}