1. Let \(R \) be an integral domain. A nonzero nonunit element \(z \in R \) is said to be a universal side divisor if given any \(x \in R \) there is a \(r \in R \) such that
\[
x = rz + v
\]
where \(v \) is either 0 or a unit in \(R \). Let \(R \) be a Euclidean domain with norm function \(\phi \).
 a) (5 pt) Show that any nonunit in \(R \) of minimal norm is a universal side divisor.
 b) (5 pt) Show that \(\mathbb{Z}[\frac{1+\sqrt{-19}}{2}] \) is not Euclidean.

2. Let \(d \) be a squarefree integer. We define
\[
R = \mathbb{Z}[\omega] \quad \text{where} \quad \omega = \begin{cases} \sqrt{d}, & \text{if } d \equiv 2, 3 \mod(4); \\ \frac{1+\sqrt{d}}{2}, & \text{if } d \equiv 1 \mod(4). \end{cases}
\]
a) (5 pt) Show that \(R \) is integral over \(\mathbb{Z} \).
 b) (5 pt) We define a norm to be a map \(N : R \rightarrow \mathbb{N}_0 \) satisfying \(N(0) = 0 \) and \(N(ab) = N(a)N(b) \). Show that \(N : \mathbb{Z}[\omega] \rightarrow \mathbb{N}_0 \) defined by \(N(a+b\omega) = (a+b\omega)(a+b\overline{\omega}) \) is a norm.
 c) (5 pt) Use the norm to show that \(\mathbb{Z}[\omega] \) is atomic.
 d) (5 pt) Show that the ring \(\mathbb{Z}[\sqrt{-14}] \) is not a UFD.

3. Let \(R \) be a domain and \(N \) a norm on \(R \). We say that \(N \) is a Dedekind-Hasse norm if \(N \) is positive and for every nonzero \(x, y \in R \) either \(y \) is divisible by \(x \) or we can find \(a, b \in R \) such that
\[
0 < N(ax+y) < N(x).
\]
a) (5 pt) Show that \(R \) is a PID if and only if \(R \) has a Dedekind-Hasse norm.
 b) (5 pt) Show that the norm defined in problem 2 for the ring \(\mathbb{Z}[\frac{1+\sqrt{-19}}{2}] \) is a Dedekind-Hasse norm (hence \(\mathbb{Z}[\frac{1+\sqrt{-19}}{2}] \) is a PID that is not Euclidean).

4. Suppose that \(R \) is a UFD.
 a) (5 pt) Show that \(R[[x]] \) is atomic.
 b) (5 pt) Show that if \(f(x) \in R[[x]] \) is such that \(f(0) = \prod_{i=1}^{n} p_i^{a_i} \) (with the \(p_i \)'s distinct nonzero prime elements of \(R \) and each \(a_i > 0 \)) and \(f(x) = \prod_{j=1}^{t} f_j(x) \) (with each \(f_j(x) \) irreducible) then \(1 \leq t \leq \sum_{i=1}^{n} a_i \). Give examples to show that both bounds can be achieved.
 c) (5 pt) Suppose that \(R \) is a PID. Show that if \(f(x) \neq x \) is irreducible in \(R[[x]] \) then \(f(x) = p^n + xg(x) \) with \(p \) a nonzero prime in \(R \) and \(g(x) \in R[[x]] \) (is the converse true?).
 d) (5 pt) With the notation as above, show that if \(R \) is a PID, then \(n \leq t \leq \sum_{i=0}^{n} a_i \).
5. Let R be a domain with quotient field K. $\omega \in K$ is called almost integral over R if there is a nonzero $r \in R$ such that $rx^n \in R$ for all $n \geq 0$. If R contains all of the elements $\omega \in K$ that are almost integral over R, we say that R is completely integrally closed.

a) (5 pt) Show that any UFD is completely integrally closed.

b) (5 pt) Suppose that $A \subseteq B$ are integral domains. Completely characterize when the domain $A + xB[x]$ is a UFD.