\documentclass[12pt]{amsart} \usepackage{amssymb} \usepackage{amsmath} \usepackage{amsthm} \usepackage[all]{xy} \voffset=-1in \hoffset=-1in \textheight=10in \textwidth=6in \begin{document} \author{} \title{Math 724\\Fall 2010\\Homework 2} \date{} \maketitle \thispagestyle{empty} \pagestyle{empty} \centerline{\it Due Friday, February 19, 2010.} \centerline{} \noindent 1. Let $R$ be an integral domain. A nonzero nonunit element $z\in R$ is said to be a {\it universal side divisor} if given any $x\in R$ there is a $r\in R$ such that \[ x=rz+v \] \noindent where $v$ is either 0 or a unit in $R$. Let $R$ be a Euclidean domain with norm function $\phi$. \begin{itemize} \item[a)] (5 pt) Show that any nonunit in $R$ of minimal norm is a universal side divisor. \item[b)] (5 pt) Show that $\mathbb{Z}[\frac{1+\sqrt{-19}}{2}]$ is not Euclidean. \end{itemize} \centerline{} \noindent 2. Let $d$ be a squarefree integer. We define \[ R=\mathbb{Z}[\omega] \text{ where } \omega= \begin{cases} \sqrt{d}, \text{ if $d\equiv 2,3$ mod($4$);}\\ \frac{1+\sqrt{d}}{2}, \text{ if $d\equiv 1$ mod($4$).} \end{cases} \] \begin{itemize} \item[a)] (5 pt) Show that $R$ is integral over $\mathbb{Z}$. \item[b)] (5 pt) We define a {\it norm} to be a map $N:R\longrightarrow\mathbb{N}_0$ satisfying $N(0)=0$ and $N(ab)=N(a)N(b)$. Show that $N:\mathbb{Z}[\omega]\longrightarrow\mathbb{N}_0$ defined by $N(a+b\omega)=(a+b\omega)(a+b\overline{\omega})$ is a norm. \item[c)] (5 pt) Use the norm to show that $\mathbb{Z}[\omega]$ is atomic. \item[d)] (5 pt) Show that the ring $\mathbb{Z}[\sqrt{-14}]$ is not a UFD. \end{itemize} \centerline{} \noindent 3. Let $R$ be a domain and $N$ a norm on $R$. We say that $N$ is a {\it Dedekind-Hasse norm} if $N$ is positive and for every nonzero $x,y\in R$ either $y$ is divisible by $x$ or we can find $a,b\in R$ such that \[ 00$) and $f(x)=\prod_{j=1}^t f_j(x)$ (with each $f_j(x)$ irreducible) then $1\leq t\leq \sum_{i=1}^n a_i$. Give examples to show that both bounds can be achieved. \item[c)] (5 pt) Suppose that $R$ is a PID. Show that if $f(x)\neq x$ is irreducible in $R[[x]]$ then $f(x)=p^n+xg(x)$ with $p$ a nonzero prime in $R$ and $g(x)\in R[[x]]$ (is the converse true?). \item[d)] (5 pt) With the notation as above, show that if $R$ is a PID, then $n\leq t\leq\sum_{i=0}^n a_i$. \end{itemize} \centerline{} \noindent 5. Let $R$ be a domain with quotient field $K$. $\omega\in K$ is called almost integral over $R$ if there is a nonzero $r\in R$ such that $rx^n\in R$ for all $n\geq 0$. If $R$ contains all of the elements $\omega\in K$ that are almost integral over $R$, we say that $R$ is completely integrally closed. \begin{itemize} \item[a)] (5 pt) Show that any UFD is completely integrally closed. \item[b)] (5 pt) Suppose that $A\subseteq B$ are integral domains. Completely characterize when the domain $A+xB[x]$ is a UFD. \end{itemize} \end{document}