\documentclass[12pt]{amsart} \usepackage{amssymb} \usepackage{amsmath} \usepackage{amsthm} \usepackage[all]{xy} \voffset=-1in \hoffset=-1in \textheight=10in \textwidth=6in \begin{document} \author{} \title{Math 724\\Summer 2009\\Homework 2} \date{} \maketitle \thispagestyle{empty} \pagestyle{empty} \centerline{\it Some other (not necessarily distinct) time.} \centerline{} \noindent 1. (5 pt) Consider the diagram \begin{center} $\xymatrix{ & \ar[d] & & \ar[d] & \\ & P_1^{\prime}\ar[d] & & P_1^{\prime\prime}\ar[d] & \\ & P_0^{\prime}\ar[d] & & P_0^{\prime\prime}\ar[d] & \\ 0\ar[r] & A^{\prime}\ar[r]\ar[d] & A\ar[r] & A^{\prime\prime}\ar[r]\ar[d] & 0\\ & 0 & & 0 & }$ \end{center} \noindent where the columns are projective resolutions and the bottom row is exact. She that there is a projective resolution of $A$ and chain maps such that the columns form an exact sequence of complexes. \centerline{} \noindent 2. (5 pt) Let $\xymatrix@1{0\ar[r]&A\ar[r]&B\ar[r]&C\ar[r]&0}$ be a short exact sequence of $R-$modules. If $T$ is a covariant (additive) functor then show that there is a long exact sequence \begin{center} $\xymatrix{\cdots\ar[r] & \text{L}_n\text{T}A\ar[r] & \text{L}_n\text{T}B\ar[r] & \text{L}_n\text{T}C\ar[r] & \text{L}_{n-1}\text{T}A\ar[r] & \cdots\\ \cdots\ar[r] & \text{L}_0\text{T}A\ar[r] & \text{L}_0\text{T}A\ar[r] & \text{L}_0\text{T}A\ar[r] & 0. & }$ \end{center} \end{document}