\documentclass[12pt]{amsart} \usepackage{amssymb} \usepackage{amsmath} \usepackage{amsthm} \usepackage[all]{xy} \voffset=-1in \hoffset=-1in \textheight=10in \textwidth=6in \begin{document} \author{} \title{Math 724\\Fall 2005\\Homework 3} \date{} \maketitle \thispagestyle{empty} \pagestyle{empty} \centerline{\it Due Wednesday October 19, 2005.} \centerline{} \noindent 1. (5 pt) Show that $R$ is a PID if and only if $R$ is a UFD of dimension no more than 1. \centerline{} \noindent 2. (5 pt) Let $R$ be a commutative ring with identity and $T$ an extension of $R$ that is (finitely) generated by $m$ elements over $R$. If the Krull dimension of $R$ is $n$, show that \[ \text{dim}(T)\leq 2^mn+2^m-1. \] \noindent What is the lower bound for $\text{dim}(T)$? \centerline{} \noindent 3. Recall that $V$ is a valuation domain if given two nonzero elements $a,b\in V$ then either $a$ divides $b$ or $b$ divides $a$. A Bezout domain is a domain where every finitely generated ideal is principal and a GCD domain is a domain where every two (nonzero) elements have a greatest common divisor. \begin{itemize} \item[a)] (5 pt) Show that any we have the implications \[ \text{Valuation domain}\Longrightarrow\text{Bezout domain}\Longrightarrow\text{GCD domain}. \] \item[b)] (5 pt) Show that none of the implications above are reversible. \item[c)] (5 pt) Show that $R$ is a valuation domain if and only if it is Bezout and quasi-local. \item[d)] (5 pt) Show that $R$ is a Bezout domain if and only if it is a GCD domain with the property that $\text{gcd}(a,b)$ is a linear combination of $a$ and $b$. \item[e)] (5 pt) Show that any GCD domain (and hence Bezout and valuation) is integrally closed. \end{itemize} \end{document}