MATH 724
 SUMMER 2010
 HOMEWORK 4

Due Friday, August 6, 2010.

1. (5 pt) For this first one, you may use the fact that is I is a fractional ideal, then there are elements $x, y \in I$ such that $R:(R: I)=R:(R:(R x+R y))$. The problem is to explain why if I is divisorial then there are elements $u, v \in(R: I) \backslash\{0\}$ such that $I=R u^{-1} \bigcap R v^{-1}$.
2. Let R be an integral domain with quotient field K. We say that the element $\omega \in K$ is Ω-almost integral if $r \omega \in R$ implies that we can find a positive integer b such that $r^{b} \omega^{n} \in R$ for all $n \geq 0$. Show that following.
a) (5 pt) If ω is Ω-almost integral, then ω is almost integral.
b) (5 pt) Give an example of an almost integral element that is not Ω-almost integral.
c) (5 pt) Show that V is a valuation domain, then V is Ω-almost integrally closed.
d) (5 pt) Show that D is a Prüfer domain, then D is Ω-almost integrally closed.
