\documentclass[12pt]{amsart} \usepackage{amssymb} \usepackage{amsmath} \usepackage{amsthm} \usepackage[all]{xy} \voffset=-1in \hoffset=-1in \textheight=10in \textwidth=6in \begin{document} \author{} \title{Math 724\\Fall 2010\\Homework 6} \date{} \maketitle \thispagestyle{empty} \pagestyle{empty} \centerline{\it Due Monday, May 10, 2010} \centerline{} \noindent 1. Let $R$ be a very strongly atomic ring and $e\in R$ an idempotent. \begin{itemize} \item[a)] (5 pt) Show that $e$ is either $0$ or $1$. \item[b)] (5 pt) Use this to find all values of $n>1$ such that $\mathbb{Z}/n\mathbb{Z}$ is very strongly atomic. \end{itemize} \centerline{} \noindent 2. Let $R$ be an atomic domain and $x\in R$ a nonzero, nonunit. Let Irr($R$) denote the set of distinct (up to associates) irreducible divisors of $x$. We define the irreducible divisor graph of the element $x$ ($G_x$) to be the graph with vertices from Irr($R$) and we declare that if $u,v\in\text{Irr}(R)$ we say that $u$ and $v$ have an edge between them if $uv$ divides $x$ (we ignore the possibility of loops). Prove the following conditions are equivalent. \begin{itemize} \item[a)] $R$ is a UFD. \item[b)] $G_x$ is connected for all nonzero, nonunits $x\in R$. \item[c)] $G_x$ is complete for all nonzero, nonunits $x\in R$. \end{itemize} \end{document}