\documentclass[12pt]{amsart} \usepackage{amssymb} \usepackage{amsmath} \usepackage{amsthm} \usepackage[all]{xy} \voffset=-1in \hoffset=-1in \textheight=10in \textwidth=6in \begin{document} \author{} \title{Math 725\\Fall 2005\\Homework 3} \date{} \maketitle \thispagestyle{empty} \pagestyle{empty} \centerline{\it Due Friday, October 13, 2006.} \centerline{} \noindent 1. Let $F\subseteq K$ be fields. \begin{itemize} \item[a)] (5 pt) Show that $F+xK[x]$ is always an HFD (note that the analogous result for $F+xK[[x]]$ was done in class). \item[b)] (5 pt) Show that if $(F+xK[x])[t]$ is an HFD, then $F$ must be algebraically closed in $K$. \end{itemize} \centerline{} \noindent 2. (5 pt) Let $d$ be a square-free integer and $n\in\mathbb{N}$. Consider the domain \[ R:= \begin{cases} \mathbb{Z}[n\sqrt{d}], & \text{ if $d\equiv 2,3\text{ mod}(4)$;}\\ \mathbb{Z}[n(\frac{1+\sqrt{d}}{2})], & \text{ if $d\equiv 1\text{ mod}(4)$.} \end{cases} \] We will let $\alpha=\sqrt{d}$ if $d\equiv 2,3\text{ mod}(4)$ and $\alpha=\frac{1+\sqrt{d}}{2}$ if $d\equiv 1\text{ mod}(4)$. Define the norm map $N:R\longrightarrow\mathbb{Z}$ by \[ N(a+bn\alpha)=(a+bn\alpha)(a+bn\overline{\alpha}) \] \noindent where $\overline{\alpha}=-\sqrt{d}$ if $d\equiv 2,3\text{ mod}(4)$ and $\overline{\alpha}=\frac{1-\sqrt{d}}{2}$ if $d\equiv 1\text{ mod}(4)$. Prove the following properties of the norm map. \begin{itemize} \item[a)] (5 pt) $N(x)=0$ if and only if $x=0$. \item[b)] (5 pt) $N(xy)=N(x)N(y)$. \item[c)] (5 pt) $N(x)=\pm 1$ if and only if $x$ is a unit in $R$. \item[d)] (5 pt) If $N(x)$ is prime, then $x$ is irreducible in $R$ (does the converse hold?). \end{itemize} \centerline{} \noindent 3. (5 pt) Find all nonprime irreducibles in $\mathbb{Z}[\sqrt{-3}]$ (you will find, in fact that this domain is extremely ``close" to being a UFD). \centerline{} \noindent 4. (5 pt) Consider the ring of integers $R:=\mathbb{Z}[\sqrt{-89}]$. Find an element of $R$ that has one irreducible factorization of length 2 and another of length 12. \end{document}