\documentclass[12pt]{amsart} \usepackage{amssymb} \usepackage{amsmath} \usepackage{amsthm} \usepackage[all]{xy} \voffset=-1in \hoffset=-1in \textheight=10in \textwidth=6in \begin{document} \author{} \title{Math 725\\Fall 2006\\Homework 6} \date{} \maketitle \thispagestyle{empty} \pagestyle{empty} \centerline{\it Due Monday, December 4, 2006.} \centerline{} \noindent 1. (5 pt) Show that if $R[x]$ is an AP-domain, then $R$ must be integrally closed (is the converse true?). \centerline{} \noindent 2. Let $V$ be a valuation domain. \begin{itemize} \item[a)] (5 pt) Show that $V$ is an AP-domain. \item[b)] (5 pt) Show that $V$ has atoms if and only if the maximal ideal of $V$ is principal. \item[c)] (5 pt) Give an example of an atomic valuation domain. \item[d)] (5 pt) Give an example of a nonatomic valuation domain with atoms. \item[e)] (5 pt) Give an example of an antimatter valuation domain of dimension 1 and an antimatter valuation domain of dimension greater than 1. \end{itemize} \centerline{} \noindent 3. (5 pt) Give an example of a non-integrally closed AP domain and use this to give an example of an AP-domain, $R$, such that $R[x]$ is not an AP-domain. \end{document}