MATH 726 SUMMER 2005 HOMEWORK 2

Due Tuesday July 5, 2005.

1. Give examples for each of the following.

- a) (5 pt) Show that $\operatorname{Hom}_R(\prod_{\alpha \in I} A_\alpha, B)$ is not generally isomorphic to $\prod_{\alpha \in I} \operatorname{Hom}_R(A_\alpha, B)$. b) (5 pt) Show that $\operatorname{Hom}_R(\prod_{\alpha \in I} A_\alpha, B)$ is not generally isomorphic to $\bigoplus_{\alpha \in I} \operatorname{Hom}_R(A_\alpha, B)$.
- a) (5 pt) Show that $\operatorname{Hom}_R(B, \bigoplus_{\alpha \in I} A_\alpha)$ is not generally isomorphic to $\bigoplus_{\alpha \in I} \operatorname{Hom}_R(B, A_\alpha)$.

a) (5 pt) Show that $\operatorname{Hom}_R(B, \bigoplus_{\alpha \in I} A_{\alpha})$ is not generally isomorphic to $\prod_{\alpha \in I} \operatorname{Hom}_R(B, A_{\alpha})$.

2. (5 pt) Show that it is not true in general that $\prod_{\alpha \in I} (A_{\alpha} \otimes_R B)$ is isomorphic to $(\prod_{\alpha\in I} A_{\alpha})\otimes_{R} B.$

3. (5 pt) Let F be an additive functor from the category of R-modules to itself. Show that if the sequence

$$0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$$

is split exact then F(A) is a summand of F(B). Use this to show that F preserves finite sums.

4. (5 pt) Show that $\operatorname{Hom}_{R}(P, -)$ is an exact functor (from the category of *R*-modules to itself) if and only if P is a projective R-module.