MATH 726 SUMMER 2005 HOMEWORK 3

Due Monday July 18, 2005.

1. (5pt) If F is an additive, right exact functor that preserves sums, show that F preserves direct limits.

2. (5 pt) Prove that any R-module A is the direct limit of its finitely generated submodules.

3. (5 pt) Let $A_1 \subseteq A_2 \subseteq A_3 \subseteq \cdots$ be an ascending chain of sets. Compute $\lim A_i$.

4. (5 pt) Prove that the inverse limit, if it exists, is unique. Then show that if the index set has the trivial quasi-order, then $\underline{\lim} A_i \cong \prod A_i$.

5. (5 pt) Show that if p is prime then the \mathbb{Z} -module, \mathbb{Z}_p , is an uncountable principal ideal domain with a unique nonzero prime ideal. Also show that if $I \subseteq \mathbb{Z}_p$ is any nonzero ideal, then \mathbb{Z}_p/I is a finite ring.