\documentclass[12pt]{amsart} \usepackage{amssymb} \usepackage{amsmath} \usepackage{amsthm} \usepackage[all]{xy} \voffset=-1in \hoffset=-1in \textheight=10in \textwidth=6in \begin{document} \author{} \title{Math 726\\Summer 2005\\Homework 5} \date{} \maketitle \thispagestyle{empty} \pagestyle{empty} \centerline{\it Due Friday August 5, 2005.} \centerline{} \noindent 1. (5pt) Let $A$ and $B$ be abelian groups. Show that $\text{Ext}^n_{\mathbb{Z}}(A,B)=0$ for all $n\geq 2$. \centerline{} \noindent 2. (5pt) Compute $\text{Ext}^1_{\mathbb{Z}}(A,B)$ where $A$ is a finitely generated abelian group. \centerline{} \noindent 3. (5 pt) Let $A$ and $B$ be abelian groups. Show that $\text{Tor}_n^{\mathbb{Z}}(A,B)=0$ for all $n\geq 2$. \centerline{} \noindent 4. (5pt) Let $R$ be an integral domain. Show that if the $R-$module $B$ is a torsion module, then $\text{Tor}_n^R(A,B)$ is torsion for all $n\geq 0$. \centerline{} \noindent 5. (5pt) Let $R$ be an integral domain. Show that $\text{Tor}_n^R(A,B)$ is torsion for all $R-$modules $A$ and $B$ and $n\geq 1$. (Hint: You may assume that any torsion free $R-$module may be embedded in a vector space over $K$, the quotient field of $R$). \end{document}