MATH 728 FALL 2004 HOMEWORK 1

Due Wednesday September 1, 2004.

1. (5 pt) Give an example of a division ring that is *not* a field.

2. Consider the set $\mathfrak{C} = \{f | f : \mathbb{R} \longrightarrow \mathbb{R}\}$ of functions from \mathbb{R} to \mathbb{R} . Also consider the collection of functions $X = \{f_{\alpha} | \alpha \in \mathbb{R}\}$ where $f_{\alpha}(x)$ is defined by

$$f_{\alpha}(x) = \begin{cases} 1 & \text{if } x = \alpha, \\ 0 & \text{if } x \neq \alpha. \end{cases}$$

- a) (5 pt) Show that \mathfrak{C} is a real vector space.
- b) (5 pt) Show that X is a linearly independent subset of \mathfrak{C} .
- c) (5 pt) If X a basis for \mathfrak{C} over \mathbb{R} ? If not can you construct a basis for \mathfrak{C} over \mathbb{R} containing X?

3. Let $\mathbb{K} \subseteq \mathbb{F}$ be fields.

- a) (5 pt) Show that \mathbb{F} is a vector space over \mathbb{K} .
- b) (5 pt) Show that if $\dim_{\mathbb{K}} \mathbb{F} = n < \infty$ then every element of \mathbb{F} is algebraic over \mathbb{K} .
- c) (5 pt) Give an example of an infinite extension of fields that is algebraic and an example of an infinite extension of fields that is not algebraic.