\documentclass[12pt]{amsart} \usepackage{amssymb} \usepackage{amsmath} \usepackage{amsthm} \usepackage[all]{xy} \voffset=-1in \hoffset=-1in \textheight=10in \textwidth=6in \begin{document} \author{} \title{Math 728\\Fall 2004\\Homework 2} \date{} \maketitle \thispagestyle{empty} \pagestyle{empty} \centerline{\it Due Wednesday September 8, 2004.} \centerline{} \noindent 1. Let $W\subseteq V$ be vector spaces over $\mathbb{F}$. \begin{itemize} \item[a)] (5 pt) Show that $\text{dim}(W)\leq\text{dim}(V)$. \item[b)] (5 pt) Show that $\text{dim}(V)=\text{dim}(W)+\text{dim}(V/W)$. \end{itemize} \centerline{} \noindent 2. (5 pt) Let $V$ and $W$ be subspaces of some vector space $U$. Show that \[ \text{dim}(V)+\text{dim}(W)=\text{dim}(V\bigcap W)+\text{dim}(V+W). \] \noindent What happens in the case where $U=V\oplus W$? \centerline{} \noindent 3. {\it In this problem we explore the notion of a ``dual space" which will reappear in many forms}. Let $V$ be a vector space over $\mathbb{F}$. We define $V^*=\text{Hom}_{\mathbb{F}}(V,\mathbb{F})$ \begin{itemize} \item[a)] (5 pt) Show that $V^*$ is a vector space over $\mathbb{F}$. \item[b)] (5 pt) Show that if $V$ is finite dimensional, then $V^*\cong V$. \item[c)] (5 pt) Show that if $V$ is finite dimensional then there is an isomorphism $V\cong V^{**}$ that is independent of the choice of basis of $V$. \item[d)] (5 pt) Show that if $V$ is infinite dimensional then $V^{*}\ncong V$. \end{itemize} \end{document}