MATH 728 FALL 2004 HOMEWORK 3

Due Friday September 17, 2004.

1. Let V be an inner product space over \mathbb{R} . Suppose that $\{e_i\}_{i \in I}$ is an orthonormal basis for V and consider the dual map $\phi_i : V \longrightarrow \mathbb{R}$ given by

$$\phi_i(e_j) = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j. \end{cases}$$

Finally, let $W \subseteq V^*$ be the subspace of V^* spanned by $\{\phi_i\}_{i \in I}$.

- a) (5 pt) Show that if $\phi \in W$ then there is a unique $u \in V$ such that $\phi(v) = \langle u, v \rangle$ for all $v \in V$.
- b) (5 pt) Conclude that if V is finite dimensional, then every linear functional on V (that is, a linear transformation from V to \mathbb{R}) is of the form $\langle \circ, u \rangle$ for some (unique) $u \in V$.

2. (5 pt) Consider the real vector space $V = \bigoplus_{i \in I} \mathbb{R}$. Show that the standard "dot product" extends to an inner product on this space.

3. (5 pt) Show that if V is a real inner product space, then $||v|| = \sqrt{\langle v, v \rangle}$ is a norm on V.

4. (5 pt) Let \mathfrak{C} be the vector space of continuous functions from [0, 1] to \mathbb{R} . Show that $\langle f, g \rangle = \int_0^1 f(t)g(t)dt$ defines an inner product on \mathfrak{C} .

5. Consider the set of functions $\sin(n\pi x)$, $n \ge 1$ on the interval [0, 1]. Use the inner product given in problem 4.

- a) (5 pt) Show that this set of functions is orthogonal.
- b) (5 pt) Adjust the set so that it is an orthonormal set.
- c) (5 pt) Consider the continous function f(x) = 2x. For each $n \ge 1$ compute $\langle 2x, \sin(n\pi x) \rangle$ (you have computed the Fourier sine coefficients of the function f(x) = 2x).
- d) (5 pt) Show that the set of continuous functions on [0, 1] is infinite dimensional.