MATH 728
 FALL 2004
 HOMEWORK 3

Due Friday September 17, 2004.

1. Let V be an inner product space over \mathbb{R}. Suppose that $\left\{e_{i}\right\}_{i \in I}$ is an orthonormal basis for V and consider the dual map $\phi_{i}: V \longrightarrow \mathbb{R}$ given by

$$
\phi_{i}\left(e_{j}\right)= \begin{cases}1 & \text { if } i=j \\ 0 & \text { if } i \neq j\end{cases}
$$

Finally, let $W \subseteq V^{*}$ be the subspace of $V *$ spanned by $\left\{\phi_{i}\right\}_{i \in I}$.
a) (5 pt) Show that if $\phi \in W$ then there is a unique $u \in V$ such that $\phi(v)=\langle u, v\rangle$ for all $v \in V$.
b) (5 pt) Conclude that if V is finite dimensional, then every linear functional on V (that is, a linear transformation from V to \mathbb{R}) is of the form $\langle\mathrm{o}, u\rangle$ for some (unique) $u \in V$.
2. (5 pt) Consider the real vector space $V=\oplus_{i \in I} \mathbb{R}$. Show that the standard "dot product" extends to an inner product on this space.
3. (5 pt) Show that if V is a real inner product space, then $\|v\|=\sqrt{\langle v, v\rangle}$ is a norm on V.
4. (5 pt) Let \mathfrak{C} be the vector space of continuous functions from $[0,1]$ to \mathbb{R}. Show that $\langle f, g\rangle=\int_{0}^{1} f(t) g(t) d t$ defines an inner product on \mathfrak{C}.
5. Consider the set of functions $\sin (n \pi x), n \geq 1$ on the interval $[0,1]$. Use the inner product given in problem 4.
a) $(5 \mathrm{pt})$ Show that this set of functions is orthogonal.
b) (5 pt) Adjust the set so that it is an orthonormal set.
c) (5 pt) Consider the continous function $f(x)=2 x$. For each $n \geq 1$ compute $\langle 2 x, \sin (n \pi x)\rangle$ (you have computed the Fourier sine coefficients of the function $f(x)=2 x)$.
d) (5 pt) Show that the set of continuous functions on $[0,1]$ is infinite dimensional.

