MATH 728
 FALL 2004
 HOMEWORK 4

Due Monday September 27, 2004.

1. (5 pt) Suppose that M and N are R-modules and that there are one to one R-module homomorphisms $f: M \longrightarrow N$ and $g: N \longrightarrow M$ (so one can identify M as a submodule of N and N as a submodule of M). Does it follow that $M \cong N$? Prove this or give a counterexample.
2. (5 pt) Let M and N be R-modules. Suppose that you have R-module homomorphisms $f: M \longrightarrow N$ and $g: N \longrightarrow M$ such that $f g=1_{N}$ and $g f=1_{M}$. Show that $N=\operatorname{im}(f) \oplus \operatorname{ker}(g)$ (and hence $M=\operatorname{im}(g) \oplus \operatorname{ker}(f))$.
3. (5 pt) Consider the following commutative diagram of R-module homomorphisms

Show that if the columns and the top two rows are exact, then the bottom row is exact.
4. (5 pt) Show that if R is commutative with identity and M is an R-module then there is an R-module isomorphism

$$
\operatorname{Hom}_{R}(R, M) \cong M
$$

5. (5 pt) Let R be commutative with identity. Show that every R-module is free if and only if R is a field.
