\documentclass[12pt]{amsart} \usepackage{amssymb} \usepackage{amsmath} \usepackage{amsthm} \usepackage[all]{xy} \voffset=-1in \hoffset=-1in \textheight=10in \textwidth=6in \begin{document} \author{} \title{Math 728\\Fall 2004\\Homework 4} \date{} \maketitle \thispagestyle{empty} \pagestyle{empty} \centerline{\it Due Monday September 27, 2004.} \centerline{} \noindent 1. (5 pt) Suppose that $M$ and $N$ are $R-$modules and that there are one to one $R-$module homomorphisms $f:M\longrightarrow N$ and $g:N\longrightarrow M$ (so one can identify $M$ as a submodule of $N$ and $N$ as a submodule of $M$). Does it follow that $M\cong N$? Prove this or give a counterexample. \centerline{} \noindent 2. (5 pt) Let $M$ and $N$ be $R-$modules. Suppose that you have $R-$module homomorphisms $f:M\longrightarrow N$ and $g:N\longrightarrow M$ such that $fg=1_N$ and $gf=1_M$. Show that $N=\text{im}(f)\oplus\text{ker}(g)$ (and hence $M=\text{im}(g)\oplus\text{ker}(f)$). \centerline{} \noindent 3. (5 pt) Consider the following commutative diagram of $R-$module homomorphisms \begin{center} $\xymatrix{ & 0\ar[d] & 0\ar[d] & 0\ar[d] & \\ 0\ar[r] & A_1\ar[r]\ar[d] & A_2\ar[r]\ar[d] & A_3\ar[r]\ar[d] & 0\\ 0\ar[r] & B_1\ar[r]\ar[d] & B_2\ar[r]\ar[d] & B_3\ar[r]\ar[d] & 0\\ 0\ar[r] & C_1\ar[r]\ar[d] & C_2\ar[r]\ar[d] & C_3\ar[r]\ar[d] & 0\\ & 0 & 0 & 0 & } $ \end{center} Show that if the columns and the top two rows are exact, then the bottom row is exact. \centerline{} \noindent 4. (5 pt) Show that if $R$ is commutative with identity and $M$ is an $R-$module then there is an $R-$module isomorphism \[ \text{Hom}_R(R,M)\cong M. \] \centerline{} \noindent 5. (5 pt) Let $R$ be commutative with identity. Show that every $R-$module is free if and only if $R$ is a field. \end{document}