MATH 728 FALL 2004 HOMEWORK 5

Due Wednesday October 6, 2004.

A category, \mathfrak{C} , is a collection of objects together with the following.

- a) A collection of disjoint sets, one for each pair of objects $A, B \in \mathfrak{C}$, denoted hom(A, B). An element $f \in \text{hom}(A, B)$ is called a morphism from A to B and is sometimes written $f : A \longrightarrow B$.
- b) For each triple (A, B, C) of objects in \mathfrak{C} , we have a function

 $\hom(B, C) \times \hom(A, B) \longrightarrow \hom(A, C)$

(if $f : A \longrightarrow B$ and $g : B \longrightarrow C$ we write $(g, f) \mapsto g \circ f$). This is called the composite and is subject to the following two axioms:

- i) $h \circ (g \circ f) = (h \circ g) \circ f$.
- ii) For any object A, there is a morphism $1_A : A \longrightarrow A$ such that for all $f: B \longrightarrow A$ and $g: A \longrightarrow B$, $g \circ 1_A = g$ and $1_A \circ f = f$.

A functor from the category \mathfrak{C} to the category \mathfrak{D} is a pair of functions (both denoted by F) such that F(C) is an object of \mathfrak{D} for all objects $C \in \mathfrak{C}$. Also if $f : A \longrightarrow B$ is a morphism, then $F(f) : F(A) \longrightarrow F(B)$ is a morphism with the following conditions.

- a) $F(1_A) = 1_{F(A)}$ for all objects A in \mathfrak{C} .
- b) $F(g \circ f) = F(g) \circ F(f)$ (in this case the functor is called covariant). OR
- b') $F(g \circ f) = F(f) \circ F(g)$ (in this case the functor is called contravariant).

1. Show that the following form categories.

- a) (5 pt) Commutative rings with identity (with ring homomorphisms).
- b) (5 pt) Abelian groups (with group homomorphisms).
- c) (5 pt) R-modules (with R-module homomorphisms).

2. (5 pt) Let \mathfrak{C} be the category of commutative rings with identity and let U(R) denote the units of R. Show that the assignment $R \mapsto U(R)$ defines a functor from the category of commutative rings with identity to the category of abelian groups (how does this work on morphisms?).

3. Consider a fixed R-module D. We have seen that for all R-modules A, $\operatorname{Hom}_R(D, A)$ is again an R-module.

- a) (5 pt) Show that the assignment $A \mapsto \operatorname{Hom}_R(D, A)$ defines a covariant functor from the category of R-modules to itself (how does it work on morphisms?).
- b) (5 pt) Show that the assignment $A \mapsto \operatorname{Hom}_R(A, D)$ defines a contravariant functor from the category of R-modules to itself (how does it work on morphisms?).