MATH 728 FALL 2004 HOMEWORK 6

Due Wednesday October 20, 2004.

- 1. Let R be commutative with identity and M and R-module.
 - a) (5 pt) Show if M is free, then M is flat.
 - b) (5 pt) Show that if M is projective, then M is flat.

2. Let $S \subseteq \mathbb{Z}$ be a multiplicatively closed subset that does not contain 0. Consider the \mathbb{Z} -module $\mathbb{Z}_S = \{n/s | n \in \mathbb{Z}, s \in S\}.$

- a) (5 pt) Compute $\mathbb{Z}_S \otimes_{\mathbb{Z}} \mathbb{Z}_{p^a}$ where $p \in \mathbb{Z}$ is a nonzero prime.
- b) (5 pt) Generalize your result from part a) by computing $\mathbb{Z}_S \otimes_{\mathbb{Z}} A$ where A is any finite abelian group.
- c) (5 pt) Generalize the results from a) and b) by computing $\mathbb{Z}_S \otimes_{\mathbb{Z}} G$ where G is any finitely generated abelian group.
- 3. (5 pt) Show that $\mathbb{Z}_m \otimes_{\mathbb{Z}} \mathbb{Z}_n \cong \mathbb{Z}_{\text{gcd}(m,n)}$.

4. (5 pt) Show that if P and Q are projective R-modules, then $P \otimes_R Q$ is a projective R-module. Is the converse true?

5. (5 pt) Show that \mathbb{Q} is a flat \mathbb{Z} -module which is not projective.