MATH 728
 FALL 2004
 HOMEWORK 6

Due Wednesday October 20, 2004.

1. Let R be commutative with identity and M and R-module.
a) (5 pt) Show if M is free, then M is flat.
b) (5 pt) Show that if M is projective, then M is flat.
2. Let $S \subseteq \mathbb{Z}$ be a multiplicatively closed subset that does not contain 0 . Consider the \mathbb{Z}-module $\mathbb{Z}_{S}=\{n / s \mid n \in \mathbb{Z}, s \in S\}$.
a) (5 pt) Compute $\mathbb{Z}_{S} \otimes_{\mathbb{Z}} \mathbb{Z}_{p^{a}}$ where $p \in \mathbb{Z}$ is a nonzero prime.
b) (5 pt) Generalize your result from part a) by computing $\mathbb{Z}_{S} \otimes_{\mathbb{Z}} A$ where A is any finite abelian group.
c) (5 pt) Generalize the results from a) and b) by computing $\mathbb{Z}_{S} \otimes_{\mathbb{Z}} G$ where G is any finitely generated abelian group.
3. (5 pt) Show that $\mathbb{Z}_{m} \otimes_{\mathbb{Z}} \mathbb{Z}_{n} \cong \mathbb{Z}_{\operatorname{gcd}(m, n)}$.
4. (5 pt) Show that if P and Q are projective R-modules, then $P \otimes_{R} Q$ is a projective R-module. Is the converse true?
5. (5 pt) Show that \mathbb{Q} is a flat \mathbb{Z}-module which is not projective.
