\documentclass[12pt]{amsart} \usepackage{amssymb} \usepackage{amsmath} \usepackage{amsthm} \usepackage[all]{xy} \voffset=-1in \hoffset=-1in \textheight=10in \textwidth=6in \begin{document} \author{} \title{Math 728\\Fall 2004\\Homework 6} \date{} \maketitle \thispagestyle{empty} \pagestyle{empty} \centerline{\it Due Wednesday October 20, 2004.} \centerline{} \noindent 1. Let $R$ be commutative with identity and $M$ and $R-$module. \begin{itemize} \item[a)] (5 pt) Show if $M$ is free, then $M$ is flat. \item[b)] (5 pt) Show that if $M$ is projective, then $M$ is flat. \end{itemize} \centerline{} \noindent 2. Let $S\subseteq\mathbb{Z}$ be a multiplicatively closed subset that does not contain 0. Consider the $\mathbb{Z}-$module $\mathbb{Z}_S=\{n/s\vert n\in\mathbb{Z}, s\in S\}$. \begin{itemize} \item[a)] (5 pt) Compute $\mathbb{Z}_S\otimes_{\mathbb{Z}}\mathbb{Z}_{p^a}$ where $p\in\mathbb{Z}$ is a nonzero prime. \item[b)] (5 pt) Generalize your result from part a) by computing $\mathbb{Z}_S\otimes_{\mathbb{Z}}A$ where $A$ is any finite abelian group. \item[c)] (5 pt) Generalize the results from a) and b) by computing $\mathbb{Z}_S\otimes_{\mathbb{Z}}G$ where $G$ is any finitely generated abelian group. \end{itemize} \centerline{} \noindent 3. (5 pt) Show that $\mathbb{Z}_m\otimes_{\mathbb{Z}}\mathbb{Z}_n\cong\mathbb{Z}_{\text{gcd}(m,n)}$. \centerline{} \noindent 4. (5 pt) Show that if $P$ and $Q$ are projective $R-$modules, then $P\otimes_R Q$ is a projective $R-$module. Is the converse true? \centerline{} \noindent 5. (5 pt) Show that $\mathbb{Q}$ is a flat $\mathbb{Z}-$module which is not projective. \end{document}