MATH 728
 FALL 2004
 FINAL EXAM

Due Wednesday December 15, 2004.

1. Suppose that A is a matrix (over a field, \mathbb{F}) with characteristic polynomial $f(x)=$ $x^{6}+2 x^{4}-7 x^{2}+4$.
a) (5 pt) Suppose that the equation $y^{2}+1=0$ has a solution in \mathbb{F}. Find all possible rational canonical forms, primary rational canonical forms, and Jordan forms (if possible).
b) (5 pt) Suppose that the equation $y^{2}+1=0$ has no solution in \mathbb{F}. Find all possible rational canonical forms, primary rational canonical forms, and Jordan forms (if possible).
2. (5 pt) Show that if M is a nilpotent matrix over a field \mathbb{F}, then all the eigenvalues of M are 0 . Use this to find all possible Jordan forms of a 5×5 matrix over a field \mathbb{F}.
3. (The Picard group) Let R be an integral domain with quotient field K. Let $\operatorname{Pic}(R)$ denote the isomorphism classes of rank 1 (finitely-generated) projective R-modules. For two isomorphism classes, $[P]$ and $[Q]$, we define multiplication via

$$
[P] \circ[Q]=\left[P \otimes_{R} Q\right] .
$$

a) (5 pt) Show that $\operatorname{Pic}(R)$ forms a monoid with this multiplication.
b) (5 pt) If P is a finitely-generated projective R-module, show that $P^{*}=$ $\operatorname{Hom}_{R}(P, R)$ is also a (finitely-generated) projective R-module.
c) (5 pt) Show that if P is a (finitely-generated) rank 1 projective R-module, then we can identify P as a fractional invertible ideal of R (hint: use the fact that P is rank 1 , tensor the injection $R \longrightarrow K$ with P; you may use the fact from class that a fractional ideal is invertible if and only if it is projective).
d) $(5 \mathrm{pt})$ Conclude that $\operatorname{Pic}(R)$ forms a group by showing that $[P]^{-1}=\operatorname{Hom}_{R}(P, R)$.
4. (5 pt) Let R be commutative with identity. Show that $K_{0}(R)$ is a direct summand of $K_{0}(R[x])$.
5. (5 pt) Let R be a Euclidean domain. Show that if M is an $n \times n$ matrix over R, then R can be reduced to a matrix of the form

$$
\left[\begin{array}{ccccc}
\lambda_{1} & 0 & 0 & \cdots & 0 \\
0 & \lambda_{2} & 0 & \cdots & 0 \\
0 & 0 & \lambda_{3} & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & \lambda_{n}
\end{array}\right]
$$

with $\lambda_{1}\left|\lambda_{2}\right| \cdots \mid \lambda_{n}$ by using elementary row and column operations (note: be careful if the matrix is singular...what is the technical definition of $a \mid b$?).

