\documentclass[12pt]{amsart} \usepackage{amssymb} \usepackage{amsmath} \usepackage{amsthm} \usepackage[all]{xy} \voffset=-1in \hoffset=-1in \textheight=10in \textwidth=6in \begin{document} \author{} \title{Math 728\\Fall 2004\\Final Exam} \date{} \maketitle \thispagestyle{empty} \pagestyle{empty} \centerline{\it Due Wednesday December 15, 2004.} \centerline{} \noindent 1. Suppose that $A$ is a matrix (over a field, $\mathbb{F}$) with characteristic polynomial $f(x)=x^6+2x^4-7x^2+4$. \begin{itemize} \item[a)] (5 pt) Suppose that the equation $y^2+1=0$ has a solution in $\mathbb{F}$. Find all possible rational canonical forms, primary rational canonical forms, and Jordan forms (if possible). \item[b)] (5 pt) Suppose that the equation $y^2+1=0$ has no solution in $\mathbb{F}$. Find all possible rational canonical forms, primary rational canonical forms, and Jordan forms (if possible). \end{itemize} \centerline{} \noindent 2. (5 pt) Show that if $M$ is a nilpotent matrix over a field $\mathbb{F}$, then all the eigenvalues of $M$ are $0$. Use this to find all possible Jordan forms of a $5\times 5$ matrix over a field $\mathbb{F}$. \centerline{} \noindent 3. ({\it The Picard group}) Let $R$ be an integral domain with quotient field $K$. Let $\text{Pic}(R)$ denote the isomorphism classes of rank 1 (finitely generated) projective $R-$modules. For two isomorphism classes, $[P]$ and $[Q]$, we define multiplication via \[ [P]\circ [Q]=[P\otimes_R Q]. \] \begin{itemize} \item[a)] (5 pt) Show that $\text{Pic}(R)$ forms a monoid with this multiplication. \item[b)] (5 pt) If $P$ is a projective $R-$module, show that $P^*=\text{Hom}_R(P,R)$ is also a projective $R-$module. \item[c)] (5 pt) Show that if $P$ is a (finitely generated) rank 1 projective $R-$module, then we can identify $P$ as a fractional invertible ideal of $R$ (hint: use the fact that $P$ is rank 1, tensor the injection $R\longrightarrow K$ with $P$; you may use the fact from class that a fractional ideal is invertible if and only if it is projective). \item[d)] (5 pt) Conclude that $\text{Pic}(R)$ forms a group by showing that $[P]^{-1}=\text{Hom}_R(P,R)$. \end{itemize} \centerline{} \noindent 4. (5 pt) Let $R$ be commutative with identity. Show that $K_0(R)$ is a direct summand of $K_0(R[x])$. \centerline{} \noindent 5. (5 pt) Let $R$ be a Euclidean domain. Show that if $M$ is an $n\times n$ matrix over $R$, then $R$ can be reduced to a matrix of the form \begin{center} \[ \left[ \begin {array}{ccccc} \ \ \lambda_1&\ \ 0&\ \ 0&\ \ \cdots&\ \ 0\\ \ \ 0&\ \ \lambda_2&\ \ 0&\ \ \cdots&\ \ 0\\ \ \ 0&\ \ 0&\ \ \lambda_3&\ \ \cdots&\ \ 0\\ \ \ \vdots &\ \ \vdots&\ \ \vdots&\ \ \vdots&\ \ \vdots\\ \ \ 0&\ \ 0&\ \ 0&\ \ \cdots&\ \ \lambda_n \end {array} \right] \] \end{center} \noindent with $\lambda_1\vert\lambda_2\vert\cdots\vert\lambda_n$ by using elementary row and column operations. \end{document}