MATH 772

SUMMER 2006
HOMEWORK 0

Due Wednesday June 14, 2006.

1. (5 pt) Let \mathbb{F} be a field and let \mathfrak{F} be a (multiplicative) subgroup of $\mathbb{F} \backslash\{0\}$. Show that if \mathfrak{F} is finite, then \mathfrak{F} is cyclic.
2. (5 pt) Let \mathbb{F} be a finite field. Show that every element in \mathbb{F} can be written as the sum of two squares (that is, if $a \in \mathbb{F}$ then $a=x^{2}+y^{2}$ for some $x, y \in \mathbb{F}$). Is this result true if the word "finite" is removed?
3. (5 pt) Let p be an odd prime and \mathbb{F} be the finite field of p^{n} elements. Show that -1 is a square in \mathbb{F} (that is, $-1=x^{2}$ for some $x \in \mathbb{F}$) if and only if $p^{n} \equiv 1 \bmod (4)$. Use this to find all odd primes for which -1 is a square $\bmod (p)$. What happens if $p=2$?
