MATH 772 SPRING 2011 HOMEWORK 1

Due Wednesday September 14, 2011.

1. In this problem, we will find all solutions to the equations $x^2 + y^2 = z^2$ with $x, y, z \in \mathbb{N}$ and look at some of the properties of the solutions.

- a) (5 pt) Show that if $(a, b, c), (u, v, w) \in \mathbb{Z}^3$ are solutions to $x^2 + y^2 = z^2$, then so are (ta, tb, tc) and (au bv, av + bu, cw) (so the set of integral solutions forms a monoid with identity (1, 0, 1)).
- b) (5 pt) Find all rational solutions to the equations $u^2 + v^2 = 1$ (hint: use the point (-1, 0) on the unit circle to parametrize the set of these solutions, or perhaps examine the Weierstrauss substitution from Calculus II).
- c) (5 pt) Show that the set of solutions to $x^2 + y^2 = z^2$ (with $x, y, z \in \mathbb{N}$) can be parametrized as follows

$$x = n^{2} - m^{2}$$
$$y = 2nm$$
$$z = n^{2} + m^{2}$$

with x, y, z pairwise relatively prime.

d) (5 pt) Show that exactly one of n, m is odd and the other is even.

2. (Infinite Descent) The objective of this problem is to show that the equation $x^4 + y^4 = z^4$ has no solutions for $x, y, z \in \mathbb{Z} \setminus \{0\}$. Note first that by the symmetry of this equation, we can assume that x, y, z > 0.

- a) (5 pt) Consider first the equation $x^4 + y^4 = Z^2$. Use the results of the first problem to write x^2, y^2 , and Z parametrically. Then find a Pythagorean triple involving y.
- b) (5 pt) Use the Pythagorean triple to find a square smaller than Z^2 that is the sum of two fourth powers.
- c) (5 pt) Derive a contradiction and explain why the equation $x^4 + y^4 = z^4$ has no nontrivial solution.

3. (5 pt) Let \mathbb{F} be a finite field. Show that every element in \mathbb{F} can be written as the sum of two squares (that is, if $a \in \mathbb{F}$ then $a = x^2 + y^2$ for some $x, y \in \mathbb{F}$). Is this result true if the word "finite" is removed?

4. (5 pt) Let p be an odd prime and \mathbb{F} be the finite field of p^n elements. Show that -1 is a square in \mathbb{F} (that is, $-1 = x^2$ for some $x \in \mathbb{F}$) if and only if $p^n \equiv 1 \mod(4)$. Use this to find all odd primes for which -1 is a square $\mod(p)$. What happens if p = 2?