MATH 772
 SPRING 2011
 HOMEWORK 1

Due Wednesday September 14, 2011.

1. In this problem, we will find all solutions to the equations $x^{2}+y^{2}=z^{2}$ with $x, y, z \in \mathbb{N}$ and look at some of the properties of the solutions.
a) (5 pt) Show that if $(a, b, c),(u, v, w) \in \mathbb{Z}^{3}$ are solutions to $x^{2}+y^{2}=z^{2}$, then so are $(t a, t b, t c)$ and ($a u-b v, a v+b u, c w$) (so the set of integral solutions forms a monoid with identity $(1,0,1)$).
b) (5 pt) Find all rational solutions to the equations $u^{2}+v^{2}=1$ (hint: use the point $(-1,0)$ on the unit circle to parametrize the set of these solutions, or perhaps examine the Weierstrauss substitution from Calculus II).
c) (5 pt) Show that the set of solutions to $x^{2}+y^{2}=z^{2}$ (with $x, y, z \in \mathbb{N}$) can be parametrized as follows

$$
\begin{aligned}
& x=n^{2}-m^{2} \\
& y=2 n m \\
& z=n^{2}+m^{2}
\end{aligned}
$$

with x, y, z pairwise relatively prime.
d) $(5 \mathrm{pt})$ Show that exactly one of n, m is odd and the other is even.
2. (Infinite Descent) The objective of this problem is to show that the equation $x^{4}+y^{4}=z^{4}$ has no solutions for $x, y, z \in \mathbb{Z} \backslash\{0\}$. Note first that by the symmetry of this equation, we can assume that $x, y, z>0$.
a) (5 pt) Consider first the equation $x^{4}+y^{4}=Z^{2}$. Use the results of the first problem to write x^{2}, y^{2}, and Z parametrically. Then find a Pythagorean triple involving y.
b) (5 pt) Use the Pythagorean triple to find a square smaller than Z^{2} that is the sum of two fourth powers.
c) (5 pt) Derive a contradiction and explain why the equation $x^{4}+y^{4}=z^{4}$ has no nontrivial solution.
3. (5 pt) Let \mathbb{F} be a finite field. Show that every element in \mathbb{F} can be written as the sum of two squares (that is, if $a \in \mathbb{F}$ then $a=x^{2}+y^{2}$ for some $x, y \in \mathbb{F}$). Is this result true if the word "finite" is removed?
4. (5 pt) Let p be an odd prime and \mathbb{F} be the finite field of p^{n} elements. Show that -1 is a square in \mathbb{F} (that is, $-1=x^{2}$ for some $x \in \mathbb{F}$) if and only if $p^{n} \equiv 1 \bmod (4)$. Use this to find all odd primes for which -1 is a $\operatorname{square} \bmod (p)$. What happens if $p=2$?

