MATH 772
 SUMMER 2006
 HOMEWORK 1

Due Monday June 26, 2006.

1. (5 pt) Let p be a prime integer. Characterize (and find the number of) units in the ring $\mathbb{Z} / p^{n} \mathbb{Z}$. Use this to find a formula for the number of units in $\mathbb{Z} / n \mathbb{Z}$ where $n>2$.
2. Find all primes p such that:
a) $(5 \mathrm{pt})-7$ is a square $\bmod (p)$.
b) $(5 \mathrm{pt}) \frac{3}{5}$ is a square $\bmod (p)$.
3. (5 pt) Show that if p is an odd prime then the units of $\mathbb{Z} / p^{n} \mathbb{Z}$ form a cyclic group. What happens in the case that $p=2$ (what is the group structure of $U\left(\mathbb{Z} / 2^{n} \mathbb{Z}\right)$)?
4. Let d be a square-free integer (that is, d is divisible by no square except 1) and consider the ring $R:=\mathbb{Z}[\omega]$ where ω is given by

$$
\omega=\left\{\begin{array}{l}
\sqrt{d} \text { if } d \equiv 2,3 \bmod (4) \\
\frac{1+\sqrt{d}}{2} \text { if } d \equiv 1 \bmod (4)
\end{array}\right.
$$

These rings are called the quadratic rings of integers. If $d>0$ the quadratic ring of integers is called real and if $d<0$ then the quadratic ring of integers is called imaginary.

We define the norm (N) by $N(a+b \omega)=(a+b \omega)(a+b \bar{\omega})$ where

$$
\bar{\omega}=\left\{\begin{array}{l}
-\sqrt{d} \text { if } d \equiv 2,3 \bmod (4) \\
\frac{1-\sqrt{d}}{2} \text { if } d \equiv 1 \bmod (4)
\end{array}\right.
$$

Verify the following properties of the norm.
a) $(5 \mathrm{pt}) N(R) \subseteq \mathbb{Z}$.
b) (5 pt$) N(x)=0$ if and only if $x=0$.
c) $(5 \mathrm{pt}) N(x y)=N(x) N(y)$.
d) (5 pt) $x \in U(R)$ if and only if $N(x)= \pm 1$.
5. (5 pt) Consider the family of quadratic rings of integers defined above. Show that if R is an imaginary quadratic ring of integers, then $U(R)= \pm 1$ unless $d=-1$ or $d=-3$. What happens in these last two cases? By way of contrast, show that $U(\mathbb{Z}[\sqrt{2}])$ is infinite.

