\documentclass[12pt]{amsart} \usepackage{amssymb} \usepackage{amsmath} \usepackage{amsthm} \usepackage[all]{xy} \voffset=-1in \hoffset=-1in \textheight=10in \textwidth=6in \begin{document} \author{} \title{Math 772\\Summer 2006\\Homework 1} \date{} \maketitle \thispagestyle{empty} \pagestyle{empty} \centerline{\it Due Monday June 26, 2006.} \centerline{} \noindent 1. (5 pt) Let $p$ be a prime integer. Characterize (and find the number of) units in the ring $\mathbb{Z}/p^n\mathbb{Z}$. Use this to find a formula for the number of units in $\mathbb{Z}/n\mathbb{Z}$ where $n>2$. \centerline{} \noindent 2. Find all primes $p$ such that: \begin{itemize} \item[a)] (5 pt) $-7$ is a square $\text{mod}(p)$. \item[b)] (5 pt) $\frac{3}{5}$ is a square $\text{mod}(p)$. \end{itemize} \centerline{} \noindent 3. (5 pt) Show that if $p$ is an odd prime then the units of $\mathbb{Z}/p^n\mathbb{Z}$ form a cyclic group. What happens in the case that $p=2$ (what is the group structure of $U(\mathbb{Z}/2^n\mathbb{Z})$)? \centerline{} \noindent 4. Let $d$ be a square-free integer (that is, $d$ is divisible by no square except 1) and consider the ring $R:=\mathbb{Z}[\omega]$ where $\omega$ is given by \[ \omega= \begin{cases} \sqrt{d}\text{ if } d\equiv 2,3\text{mod}(4)\\ \frac{1+\sqrt{d}}{2}\text{ if } d\equiv 1\text{mod}(4) \end{cases} \] \noindent These rings are called the {\it quadratic rings of integers}. If $d>0$ the quadratic ring of integers is called {\it real} and if $d<0$ then the quadratic ring of integers is called {\it imaginary}. We define the {\it norm} ($N$) by $N(a+b\omega)=(a+b\omega)(a+b\overline{\omega})$ where \[ \overline{\omega}= \begin{cases} -\sqrt{d}\text{ if } d\equiv 2,3\text{mod}(4)\\ \frac{1-\sqrt{d}}{2}\text{ if } d\equiv 1\text{mod}(4) \end{cases} \] \noindent Verify the following properties of the norm. \begin{itemize} \item[a)] (5 pt) $N(R)\subseteq\mathbb{Z}$. \item[b)] (5 pt) $N(x)=0$ if and only if $x=0$. \item[c)] (5 pt) $N(xy)=N(x)N(y)$. \item[d)] (5 pt) $x\in U(R)$ if and only if $N(x)=\pm 1$. \end{itemize} \centerline{} \noindent 5. (5 pt) Consider the family of quadratic rings of integers defined above. Show that if $R$ is an imaginary quadratic ring of integers, then $U(R)=\pm 1$ unless $d=-1$ or $d=-3$. What happens in these last two cases? By way of contrast, show that $U(\mathbb{Z}[\sqrt{2}])$ is infinite. \end{document}