MATH 772
 SPRING 2011
 HOMEWORK 2

Due Monday October 2, 2011.

1. Find all primes p such that:
a) $(5 \mathrm{pt})-7$ is a square $\bmod (p)$.
b) $(5 \mathrm{pt}) \frac{2}{5}$ is a square $\bmod (p)$.
2. (5 pt) Show that if p is an odd prime then the units of $\mathbb{Z} / p^{n} \mathbb{Z}$ form a cyclic group.

What happens in the case that $p=2$ (what is the group structure of $U\left(\mathbb{Z} / 2^{n} \mathbb{Z}\right)$)?
3. (5 pt) Consider the family of quadratic rings of integers $R:=\mathbb{Z}[\omega]$ where ω is given by

$$
\omega=\left\{\begin{array}{l}
\sqrt{d}, \text { if } d \equiv 2,3 \bmod (4) ; \\
\frac{1+\sqrt{d}}{2}, \text { if } d \equiv 1 \bmod (4)
\end{array}\right.
$$

Show that if R is an imaginary quadratic ring of integers $(d<0)$, then $U(R)= \pm 1$ unless $d=-1$ or $d=-3$. What happens in these last two cases? By way of contrast, show that $U(\mathbb{Z}[\sqrt{2}])$ is infinite.
4. (5 pt) Let R be an integral domain with quotient field K. We define the integral closure of R to be

$$
\bar{R}=\{\alpha \in K \mid p(\alpha)=0 \text { for some monic } p(x) \in R[x]\} .
$$

We say that R is integrally closed if $R=\bar{R}$ (that is, R already contains all of its integral elements from K). Prove that any UFD is integrally closed.
5. (5 pt) Let R be an integral domain with quotient field K and $p \in R$ a nonzero prime element. Show that p is also a prime element of $R[x]$.
6. (5 pt) Let F be a field extension of degree n over \mathbb{Q}. Suppose that $\omega \in F$ is a root of a monic polynomial in $\mathbb{Z}[x]$. Show that ω is a root of a monic polynomial in $\mathbb{Z}[x]$ of degree no more than n and, in particular, show that the minimal polynomial of ω (over \mathbb{Q}) may be taken to be monic and in $\mathbb{Z}[x]$.
7. (5 pt) Let d be a square-free integer. Show that the ring of integers of the quadratic field $\mathbb{Q}(\sqrt{d})$ is given by

$$
R= \begin{cases}\mathbb{Z}[\sqrt{d}] & \text { if } d \equiv 2,3 \bmod (4), \\ \mathbb{Z}\left[\frac{1+\sqrt{d}}{2}\right] & \text { if } d \equiv 1 \bmod (4)\end{cases}
$$

