## MATH 772 <br> SUMMER 2006 <br> HOMEWORK 2

## Due Monday July 3, 2006.

1. ( 5 pt ) Show that the equation $x^{4}+y^{4}=z^{2}$ has no nontrivial solutions for $x, y, z \in \mathbb{N}$. Hint: show that given a solution with $x, y, z \in \mathbb{N}$, show that a "smaller" positive solution can be obtained. This technique is referred to as "infinite descent". (Note that this problem takes care of the Fermat problem for $n=4$.)
2. ( 5 pt ) Let $R$ be an integral domain with quotient field $K$. We define the integral closure of $R$ to be

$$
\bar{R}=\{\alpha \in K \mid p(\alpha)=0 \text { for some monic } p(x) \in R[x]\} .
$$

We say that $R$ is integrally closed if $R=\bar{R}$ (that is, $R$ already contains all of its integral elements from $K$ ). Prove that any UFD is integrally closed.
3. ( $5 \mathrm{pt)}$ Let $R$ be an integral domain with quotient field $K$ and $p \in R$ a nonzero prime element. Show that $p$ is also a prime element of $R[x]$.
4. ( 5 pt ) Let $F$ be a field extension of degree $n$ over $\mathbb{Q}$. Suppose that $\omega \in F$ is a root of a monic polynomial in $\mathbb{Z}[x]$. Show that $\omega$ is a root of a monic polynomial in $\mathbb{Z}[x]$ of degree no more than $n$ and, in particular, show that the minimal polynomial of $\omega$ (over $\mathbb{Q}$ ) may be taken to be monic and in $\mathbb{Z}[x]$.
5. ( 5 pt ) Let $d$ be a square-free integer. Show that the ring of integers of the quadratic field $\mathbb{Q}(\sqrt{d})$ is given by

$$
R= \begin{cases}\mathbb{Z}[\sqrt{d}] & \text { if } d \equiv 2,3 \bmod (4) \\ \mathbb{Z}\left[\frac{1+\sqrt{d}}{2}\right] & \text { if } d \equiv 1 \bmod (4)\end{cases}
$$

