\documentclass[12pt]{amsart} \usepackage{amssymb} \usepackage{amsmath} \usepackage{amsthm} \usepackage[all]{xy} \voffset=-1in \hoffset=-1in \textheight=10in \textwidth=6in \begin{document} \author{} \title{Math 772\\Fall 2011\\Homework 3} \date{} \maketitle \thispagestyle{empty} \pagestyle{empty} \centerline{\it Due Monday, October 24, 2011.} \centerline{} \noindent 1. Consider the rings of integers $\mathbb{Z}[\sqrt{2}]$ and $\mathbb{Z}[\sqrt{-2}]$. \begin{itemize} \item[a)] (5 pt) Pick one of these domains and show that it is Euclidean (they both are and you may use this knowledge in the next two parts). \item[b)] (5 pt) Find all positive primes that can be represented in the form $x^2+2y^2$. \item[c)] (5 pt) Find all positive primes that can be represented in the form $x^2-2y^2$. \end{itemize} \centerline{} \noindent 2. Consider the ring of algebraic integers $R$ with quotient field $K$. One can define the norm ($N$) from $K$ to $\mathbb{Q}$ via \[ N(x)=\prod_{\sigma}\sigma(x) \] \noindent where the product ranges over all the distinct embeddings of $K$ into $\mathbb{C}$ (and the norm on $R$ is just the restriction of this map to $R$). Perform the following tasks. \begin{itemize} \item[a)] (5 pt) Show $N(xy)=N(x)N(y)$ (this should be easy!). \item[b)] (5 pt) Show $N(x)=0$ if and only if $x=0$. \item[c)] (5 pt) Show that the image of the norm is contained in $\mathbb{Q}$ and if $x\in R$ then $N(x)\in\mathbb{Z}$. \item[d)] (5 pt) Show that if $x\in R$ then $x$ is a unit of $R$ if and only if $N(x)=\pm 1$. \item[e)] (5 pt) For the case $R=\mathbb{Z}[\sqrt[3]{2}]$ explicitly find the norm function. \item[f)] (5 pt) Use the previous part to show that $\mathbb{Z}[2\sqrt[3]{2}]$ is not an HFD. \end{itemize} \centerline{} \noindent 3. (5 pt) Determine a quadratic ring of integers such that the inert primes are precisely the primes $p$ such that $p\equiv 5,11\ \text{mod}(12)$ or convince me that there is no such animal. \centerline{} \end{document}