MATH 772
 SUMMER 2006
 HOMEWORK 3

Due Friday, Bastille Day, 2006.

1. Consider the rings of integers $\mathbb{Z}[\sqrt{2}]$ and $\mathbb{Z}[\sqrt{-2}]$.
a) (5 pt) Show that both of these domains are Euclidean.
b) (5 pt) Find all positive primes that can be represented in the form $x^{2}+2 y^{2}$.
c) $(5 \mathrm{pt})$ Find all positive primes that can be represented in the form $x^{2}-2 y^{2}$.
2. (5 pt) (Benko Reciprocity) Show that if p and q are odd positive primes then

$$
\binom{-p}{q}=\binom{q}{p}(-1)^{\left(\frac{-p-1}{2}\right)\left(\frac{q-1}{2}\right)} .
$$

3. (5 pt) Consider the ring of algebraic integers R with quotient field K. One can define the norm (N) from K to \mathbb{Q} via

$$
N(x)=\prod_{\sigma} \sigma(x)
$$

where the product ranges over all the distinct embeddings of K into \mathbb{C} (and the norm on R is just the restriction of this map to R).

Perform the following tasks.
a) (5 pt) Show $N(x y)=N(x) N(y)$ (this should be easy!).
b) (5 pt) Show $N(x)=0$ if and only if $x=0$.
c) (5 pt) Show that the image of the norm is contained in \mathbb{Q} and if $x \in R$ then $N(x) \in \mathbb{Z}$.
d) (5 pt) Show that if $x \in R$ then x is a unit of R if and only if $N(x)= \pm 1$.
e) (5 pt) For the case $R=\mathbb{Z}[\sqrt[3]{2}]$ explicitly find the norm function.
f) (5 pt) Use the previous part to show that $\mathbb{Z}[2 \sqrt[3]{2}]$ is not an HFD.
4. (5 pt) Determine a quadratic ring of integers such that the inert primes are precisely the primes p such that $p \equiv 5,7 \bmod (12)$ or convince me that there is no such animal.

