MATH 772
 FALL 2011
 HOMEWORK 4

Due Friday, November 18, 2011.

1. Find the class group for each quadratic ring of integers below.
a) $(5 \mathrm{pt}) \mathbb{Z}[\sqrt{-14}]$.
b) $(5 \mathrm{pt}) \mathbb{Z}[\sqrt{-10}]$.
c) $(5 \mathrm{pt}) \mathbb{Z}\left[\frac{1+\sqrt{-23}}{2}\right]$.
d) $(5 \mathrm{pt}) \mathbb{Z}[\sqrt{-21}]$
e) $(5 \mathrm{pt}) \mathbb{Z}\left[\frac{1+\sqrt{-163}}{2}\right]$.
2. (5 pt) Find the smallest positive square-free integer, d, such that the ring of integers of the field $\mathbb{Q}[\sqrt{d}]$ is not a UFD.
3. (5 pt) Explicitly show for quadratic fields that a prime is ramified if and only if it divides the discriminant.
4. Consider the field $\mathbb{Q}(\alpha)$ where α is a root of $x^{5}-x^{3}+1$. You may assume that the ring of integers of $\mathbb{Q}(\alpha)$ is $\mathbb{Z}[\alpha]$.
a) (5 pt) Find the number of real and complex embeddings of $\mathbb{Q}(\alpha)$ into \mathbb{C}.
b) (5 pt) Find the discriminant of the field $\mathbb{Q}(\alpha)$.
c) (5 pt) Find the class group of the ring $\mathbb{Z}[\alpha]$.
d) (5 pt) Determine how the ramified primes factor in $\mathbb{Z}[\alpha]$.
e) (5 pt) Show that there is an element of norm 27 and of norm 9, but no element of norm 3 .
