MATH 772 SUMMER 2006 HOMEWORK 4

Due Monday, July 24, 2006.

- 1. Find the class group for each quadratic ring of integers below.
 - a) (5 pt) $\mathbb{Z}[\sqrt{-14}]$.
 - b) (5 pt) $\mathbb{Z}[\sqrt{-10}]$.

 - c) (5 pt) $\mathbb{Z}[\frac{1+\sqrt{-23}}{2}]$. d) (5 pt) $\mathbb{Z}[\sqrt{-21}]$ e) (5 pt) $\mathbb{Z}[\frac{1+\sqrt{-163}}{2}]$.
- 2. (5 pt) Find the smallest positive square-free integer, d, such that the ring of integers of the field $\mathbb{Q}[\sqrt{d}]$ is not a UFD.
- 3. (5 pt) Explicitly show for quadratic fields that a prime is ramified if and only if it divides the discriminant.
- 4. Consider the field $\mathbb{Q}(\alpha)$ where α is a root of $x^5 x^3 + 1$. You may assume that the ring of integers of $\mathbb{Q}(\alpha)$ is $\mathbb{Z}[\alpha]$.
 - a) (5 pt) Find the number of real and complex embeddings of $\mathbb{Q}(\alpha)$ into \mathbb{C} .
 - b) (5 pt) Find the discriminant of the field $\mathbb{Q}(\alpha)$.
 - c) (5 pt) Find the class group of the ring $\mathbb{Z}[\alpha]$.
 - d) (5 pt) Determine how the ramified primes factor in $\mathbb{Z}[\alpha]$.
 - e) (5 pt) Show that there is an element of norm 27 and of norm 9, but no element of norm 3.